首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
18-Crown-6 ether (18C6) is evaluated as a shift reagent for multidimensional ion mobility spectrometry-mass spectrometry (IMS-IMS-MS) analyses of tryptic protein digests. In this approach, 18C6 is spiked into the solution-phase mixture and noncovalent peptide-crown ion complexes are formed by electrospraying the mixture into the gas phase. After an initial mobility separation in the first IMS drift region, complexes of similar mobility are selected and dissociated via collisional activation prior to entering the second drift region. These dissociation products (including smaller complexes, naked peptide ions, charge transfer products, and fragment ions) differ in mobility from their precursor ion complexes and (in favorable cases) from one another, allowing the mixture to resolve further in the second IMS region. We estimate an IMS-IMS peak capacity of ~2400 when shift reagents are employed. The approach is illustrated by examining a tryptic digest of cytochrome c and by identifying a peptide out of a complex mixture obtained by digestion of human plasma proteins. Disadvantages arising from increased complexity of data sets as well as other advantages of this approach are considered.  相似文献   

2.
A tandem quadrupole ion trap/ion mobility spectrometer (QIT/IMS) has been constructed for structural analysis based on the gas-phase mobilities of mass-selected ions. The instrument combines the ion accumulation, manipulation, and mass-selection capabilities of a modified ion trap mass spectrometer with gas-phase electrophoretic separation in a custom-built ion mobility drift cell. The quadrupole ion trap may be operated as a conventional mass spectrometer, with ion detection using an off-axis dynode/multiplier arrangement, or as an ion source for the IMS drift cell. In the latter case, pulses of ions are ejected from the trap and transferred to the drift cell where mobility in the presence of helium buffer gas is determined by the collision cross section of the ion. Ions traversing the drift cell are detected by an in-line electron multiplier and the data processed with a multichannel scaler. Preliminary data are presented on instrumental performance characteristics and the application of QIT/ IMS to structural and conformational studies of aromatic ions and protonated amine/crown ether noncovalent complexes generated via ion/molecule reactions in the ion trap.  相似文献   

3.
Three common gaseous anesthetics, halothane, enflurane, and isoflurane, were characterized by using ion mobility spectrometry (IMS)/mass spectrometry, and the dependence of product ion distributions on temperature and concentration was evaluated. At 40 degrees C and 500 ppb, negative ion mobility spectra in air largely consisted of monomer or dimer adducts with Br- or Cl- formed through dissociative electron capture of molecular neutrals. With increased temperature or decreased vapor concentrations, declustering and dissociation of product ions became pronounced. Ion-molecule reactions in the drift region of the IMS were evident as distortions in peak shape in the mass-resolved mobility spectra and in variable reduced mobilities for the same ions. A portable hand-held IMS was used for convenient, real-time detection of enflurane in respired gases following a controlled inhalation episode.  相似文献   

4.
Traveling wave ion mobility spectrometry (TW IMS) is a new IMS method implemented in the Synapt IMS/mass spectrometry system (Waters). Despite its wide adoption, the foundations of TW IMS were only qualitatively understood and factors governing the ion transit time (the separation parameter) and resolution remained murky. Here we develop the theory of TW IMS using derivations and ion dynamics simulations. The key parameter is the ratio (c) of ion drift velocity at the steepest wave slope to wave speed. At low c, the ion transit velocity is proportional to the squares of mobility (K) and electric field intensity (E), as opposed to linear scaling in drift tube (DT) IMS and differential mobility analyzers. At higher c, the scaling deviates from quadratic in a way controlled by the waveform profile, becoming more gradual with the ideal triangular profile but first steeper and then more gradual for realistic profiles with variable E. At highest c, the transit velocity asymptotically approaches the wave speed. Unlike with DT IMS, the resolving power of TW IMS depends on mobility, scaling as K(1/2) in the low-c limit and less at higher c. A nonlinear dependence of the transit time on mobility means that the true resolving power of TW IMS differs from that indicated by the spectrum. A near-optimum resolution is achievable over an approximately 300-400% range of mobilities. The major predicted trends are in agreement with TW IMS measurements for peptide ions as a function of mobility, wave amplitude, and gas pressure. The issues of proper TW IMS calibration and ion distortion by field heating are also discussed. The new quantitative understanding of TW IMS separations allows rational optimization of instrument design and operation and improved spectral calibration.  相似文献   

5.
Differential mobility spectrometry (DMS) of nitro-organic explosives and related compounds exhibited the expected product ions of M- or M x NO2- from atmospheric pressure chemical ionization reactions in purified air at 100 degrees C. Peaks in the differential mobility spectra for these ions were confined to a narrow range of compensation voltages between -1 to +3 V which arose through a low dependence of mobility for the ions in electric fields at E/N values between 0 and 120 Td (1 Td = 10(-17) V cm2). The field dependence of ions, described as an alpha parameter, ranged from -0.005 to 0.02 at a separation field of 100 Td. The alpha parameter could be controlled through the addition of organic vapors into the drift gas and was increased to 0.08-0.24 with 1000 ppm of methylene chloride in the drift gas. This modification of the drift gas resulted in compensation voltages of +3 to +21 V for peaks. The improved separation of peaks was consistent with a model of ion characterization by DeltaK or Kl - Kh, where Kl is the mobility coefficient of ions clustered with vapor neutrals during the low-field portion of the separation field waveform and Kh is for the same core ion when heated and declustered during the high-field portion of waveform.  相似文献   

6.
7.
Multidimensional ion mobility spectrometry (IMS-IMS and IMS-IMS-IMS) techniques have been combined with mass spectrometry (MS) and investigated as a means of generating and separating peptide and protein fragment ions. When fragments are generated inside a drift tube and then dispersed by IMS prior to MS analysis, it is possible to observe many features that are not apparent from MS analysis alone. The approach is demonstrated by examining fragmentation patterns arising from electrospray ion distributions of insulin chain B and ubiquitin. The multidimensional IMS approach makes it possible to select individual components for collisional activation and to disperse fragments based on differences in mobility prior to MS analysis. Such an approach makes it possible to observe many features not apparent by MS analysis alone.  相似文献   

8.
Ion mobility spectrometry-time-of-flight mass spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity, high-throughput platform, for example, for proteomics applications. In this work, we have developed and integrated three advanced technologies, including efficient ion accumulation in an ion funnel trap prior to IMS separation, multiplexing (MP) of ion packet introduction into the IMS drift tube, and signal detection with an analog-to-digital converter, into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of, for example, blood plasma. To better address variable sample complexity, we have developed and rigorously evaluated a novel dynamic MP approach that ensures correlation of the analyzer performance with an ion source function and provides the improved dynamic range and sensitivity throughout the experiment. The MP IMS-TOFMS instrument has been shown to reliably detect peptides at a concentration of 1 nM in the presence of a highly complex matrix, as well as to provide a 3 orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features were found to yield approximately 700 unique peptide identifications at a false discovery rate (FDR) of approximately 7.5%. Accounting for IMS information gave rise to a projected FDR of approximately 4%. Signal reproducibility was found to be greater than 80%, while the variations in the number of unique peptide identifications were <15%. A single sample analysis was completed in 15 min that constitutes almost 1 order of magnitude improvement compared to a more conventional LC-MS approach.  相似文献   

9.
Linear and nonlinear wavelet compression of ion mobility spectrometry (IMS) data are compared and evaluated. IMS provides low detection limits and rapid response for many compounds. Nonlinear wavelet compression of ion mobility spectra reduced the data to 4-5% of its original size, while eliminating artifacts in the reconstructed spectra that occur with linear compression, and the root-mean-square reconstruction error was 0.17-0.20% of the maximum intensity of the uncompressed spectra. Furthermore, nonlinear wavelet compression precisely preserves the peak location (i.e., drift time). Small variations in peak location may occur in the reconstructed spectra that were linearly compressed. A method was developed and evaluated for optimizing the compression. The compression method was evaluated with in-flight data recorded from ion mobility spectrometers mounted in an unmanned aerial vehicle (UAV). Plumes of dimethyl methylphosphonate were disseminated for interrogation by the UAV-mounted IMS system. The daublet 8 wavelet filter exhibited the best performance for these evaluations.  相似文献   

10.
The space charge effect has an important role in instruments dealing with ion packets and charged particles in gas phase such as the mass spectrometer and ion mobility spectrometer (IMS). It has been shown that the space charge is partially responsible for peak broadening in IMS depending on the ion density. Here, we explore the effect of space charge on peak shifting in IMS. We show that the field created by a large peak influences the drift time of a neighboring small peak. An experimental method was introduced to accurately measure the effect of space charge between two peaks. In this method, a double pulse was applied to the shutter grid to create two closed ion packets with a given initial spacing. The final spacing was then measured at the collector through the separation of the two peaks. This study shows that space charge repulsion must be considered for accurate measurements of ion mobilities. The experiments were performed in both normal and inverse modes. A theoretical model was also proposed to describe the repulsion between two ion packets in IMS.  相似文献   

11.
The design of a new ion mobility mass spectrometer (IM-MS) is presented. This new design features an ambient-pressure resistive glass ion mobility drift tube (RGIMS) coupled to a high-resolution time-of-flight mass spectrometer (TOFMS) by an enhanced interface that includes two segmented quadrupoles. The interface design demonstrates an increase in sensitivity while maintaining high resolving power typically achieved for ambient-pressure IMS drift tubes. Performance of the prototype instrument was evaluated and the analytical figures of merit for standard solutions as well as complex samples such as human blood were determined. For a 3 μM solution of caffeine, the peak was collected in 36 s and gave a response of 10 counts/s. The detection limit (defined as 1 count/s) was calculated to be 300 nM concentration of caffeine from the response rate from the 36 s run. Controlled fragmentation of caffeine was achieved through adjustment of voltages applied on the interface lenses. Over 300 tentative metabolites were detected in human blood along with 80 isomers/isobars with ion counts >5. Isotope ratios from extracted mass spectra of selected mobility peaks were used to identify selected metabolite compounds. High separation power for both IMS (resolving power, t(d)/Δt(w1/2), was 85) and MS (mass resolving power, m/Δm, maximum was 7000 with a mass accuracy between 2 and 10 ppm) was measured. Developed software for data acquisition, control and display allowed flexibility in instrument control, data evaluation and visualization.  相似文献   

12.
Pulsed-ionization miniature ion mobility spectrometer   总被引:3,自引:0,他引:3  
We have demonstrated a miniature ion mobility spectrometer (IMS) that employs single pulses of corona discharge ionization. IMS spectra of both positive and negative ions generated from ambient air were measured as a function of drift field under various ionization conditions. Ion mobility spectra were studied with various pulse widths for both positive and negative ions, giving insights into mechanisms and kinetics of corona discharge ionization used in the miniature IMS. A combination of a pulsed potential with a steady dc bias was used to generate ions in the miniature IMS. There was a threshold dc potential for ion generation for a given pulse height. The dc ionization threshold was found to decrease linearly with increasing pulse height.  相似文献   

13.
Conventional ion mobility spectrometers that sample ion packets from continuous sources have traditionally been constrained by an inherently low duty cycle. As such, ion utilization efficiencies have been limited to <1% in order to maintain instrumental resolving power. Using a modified electrodynamic ion funnel, we demonstrated the ability to accumulate, store, and eject ions in conjunction with ion mobility spectrometry (IMS), which elevated the charge density of the ion packets ejected from the ion funnel trap (IFT) and provided a considerable increase in the overall ion utilization efficiency of the IMS instrument. A 7-fold increase in signal intensity was revealed by comparing continuous ion beam current with the amplitude of the pulsed ion current in IFT-IMS experiments using a Faraday plate. Additionally, we describe the IFT operating characteristics using a time-of-flight mass spectrometer attached to the IMS drift tube.  相似文献   

14.
Monosaccharide structural isomers including sixteen methyl-D-glycopyranosides and four methyl-N-acetylhexosamines were subjected to ion mobility measurements by electrospray ion mobility mass spectrometry. Two ion mobility-MS systems were employed: atmospheric pressure drift tube ion mobility time-of-flight mass spectrometry and a Synapt G2 HDMS system which incorporates a low pressure traveling wave ion mobility separator. All the compounds were investigated as [M + Na](+) ions in the positive mode. A majority of the monosaccharide structural isomers exhibited different mobility drift times in either system, depending on differences in their anomeric and stereochemical configurations. In general, drift time patterns (relative drift times of isomers) matched between the two instruments. Higher resolving power was observed using the atmospheric pressure drift tube. Collision cross section values of monosaccharide structural isomers were directly calculated from the atmospheric pressure ion mobility experiments, and a collision cross section calibration curve was made for the traveling wave ion mobility instrument. Overall, it was demonstrated that ion mobility-mass spectrometry using either drift tube or traveling wave ion mobility is a valuable technique for resolving subtle variations in stereochemistry among the sodium adducts of monosaccharide methyl glycosides.  相似文献   

15.
Traveling wave ion mobility spectrometers (TW IMS) operate at significantly higher fields than drift tube ion mobility spectrometers. Here we measured the fragmentation of the fragile p-methoxybenzylpyridinium ion inside the TW ion mobility cell of the first-generation SYNAPT HDMS spectrometer. The ion's vibrational internal energy was quantified by a vibrational effective temperature T(eff,vib), which is the mean temperature of the ions inside the cell that would result in the same fragmentation yield as observed experimentally. Significant fragmentation of the probe ion inside the TW IMS cell was detected, indicating that field heating of the ions takes place in TW IMS. For typical small molecule IMS conditions, T(eff,vib) = 555 ± 2 K. The variations of the effective temperature were studied as a function of the IMS parameters, and we found that T(eff,vib) decreases when the wave height decreases, when the pressure increases, or when the wave speed increases. The energy transfer efficiency of argon is higher than for He, N(2), or CO(2). With T(eff,vib) being directly related to the ion speed inside the TW IMS, our results also provide new insight on the ion movement in TW IMS. We also discuss the influence of field heating of ions for calibration and structural studies in TW IMS.  相似文献   

16.
Space charge effects on resolution in a miniature ion mobility spectrometer   总被引:4,自引:0,他引:4  
Miniaturization of ion mobility spectrometry (IMS) is expected to have many advantages, as well as difficulties, in the separation of chemical species at atmospheric pressure. We report the results of studies of a miniature ion mobility spectrometer that has a drift channel 1.7 mm in diameter, the smallest cross section reported to date. The miniature cell contains a homogeneous drift field and is operated at atmospheric pressure. The miniature IMS has been characterized by measuring both negative and positive ion spectra using a frequency-quadrupled Nd: YAG laser on samples of NO, O2, and methyl iodide; a useful resolution (> 10) was achieved with an operating voltage of 500 V. Peak broadening due to Coulomb repulsion was determined to have a major effect on the resolution of the miniature device.  相似文献   

17.
The utility of ion mobility spectrometry (IMS) for separation of mixtures and structural characterization of ions has been demonstrated extensively, including in biological and nanoscience contexts. A major attraction of IMS is its speed, several orders of magnitude greater than that of condensed-phase separations. Nonetheless, IMS combined with mass spectrometry (MS) has remained a niche technique, substantially because of limited sensitivity resulting from ion losses at the IMS-MS junction. We have developed a new electrospray ionization (ESI)-IMS-QTOF MS instrument that incorporates electrodynamic ion funnels at both front ESI-IMS and rear IMS-QTOF interfaces. The front funnel is of the novel "hourglass" design that efficiently accumulates ions and pulses them into the IMS drift tube. Even for drift tubes of 2-m length, ion transmission through IMS and on to QTOF is essentially lossless across the range of ion masses relevant to most applications. The rf ion focusing at the IMS terminus does not degrade IMS resolving power, which exceeds 100 (for singly charged ions) and is close to the theoretical limit. The overall sensitivity of the present ESI-IMS-MS system is comparable to that of commercial ESI-MS, which should make IMS-MS suitable for analyses of complex mixtures with ultrahigh sensitivity and exceptional throughput.  相似文献   

18.
Ion mobility spectrometry (IMS) is a rapid, gas-phase separation technique that exhibits excellent separation of ions as a standalone instrument. However, IMS cannot achieve optimal separation power with both small and large ions simultaneously. Similar to the general elution problem in chromatography, fast ions are well resolved using a low electric field (50-150 V/cm), whereas slow drifting molecules are best separated using a higher electric field (250-500 V/cm). While using a low electric field, IMS systems tend to suffer from low ion transmission and low signal-to-noise ratios. Through the use a novel voltage algorithm, some of these effects can be alleviated. The electric field was swept from low to high while monitoring a specific drift time, and the resulting data were processed to create a 'voltage-sweep' spectrum. If an optimal drift time is calculated for each voltage and scanned simultaneously, a spectrum may be obtained with optimal separation throughout the mobility range. This increased the resolving power up to the theoretical maximum for every peak in the spectrum and extended the peak capacity of the IMS system, while maintaining accurate drift time measurements. These advantages may be extended to any IMS, requiring only a change in software.  相似文献   

19.
Our aim in this investigation was to demonstrate the potential of the high-resolution electrospray ionization ion mobility spectrometry (ESI-IMS) technique as an analytical separation tool in analyzing biomolecular mixtures to pursue astrobiological objectives of searching for the chemical signatures of life during an in-situ exploration of solar system bodies. Because amino acids represent the basic building blocks of life, we used common amino acids to conduct the first part of our investigation, which is being reported here, to demonstrate the feasibility of using the ESI-IMS technique for detection of the chemical signatures of life. The ion mobilities of common amino acids were determined by electrospray ionization ion mobility spectrometry using three different drift gases (N2, Ar, and CO2). We demonstrated that the selectivity can be vastly improved in ion mobility spectroscopy (IMS) in detecting organic molecules by using different drift gases. When a judicial choice of drift gas is made, a vastly improved separation of two different amino acid ions resulted. It was found that each of the studied amino acids could be uniquely identified from the others, with the exception of alanine and glycine, which were never separable by more then 0.1 ms. This unique identification is a result of the different polarizabilities of the various drift gases. In addition, a better separation was achieved by changing the drift voltage in successive experimental runs without significantly degrading the resolution. We also report the result of our analysis of liquid samples containing mixtures of amino acids.  相似文献   

20.
A new method coupling multivariate self-modeling mixture analysis and pattern recognition has been developed to identify toxic industrial chemicals using fused positive and negative ion mobility spectra (dual scan spectra). A Smiths lightweight chemical detector (LCD), which can measure positive and negative ion mobility spectra simultaneously, was used to acquire the data. Simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) was used to separate the analytical peaks in the ion mobility spectra from the background reactant ion peaks (RIP). The SIMPLSIMA analytical components of the positive and negative ion peaks were combined together in a butterfly representation (i.e., negative spectra are reported with negative drift times and reflected with respect to the ordinate and juxtaposed with the positive ion mobility spectra). Temperature constrained cascade-correlation neural network (TCCCN) models were built to classify the toxic industrial chemicals. Seven common toxic industrial chemicals were used in this project to evaluate the performance of the algorithm. Ten bootstrapped Latin partitions demonstrated that the classification of neural networks using the SIMPLISMA components was statistically better than neural network models trained with fused ion mobility spectra (IMS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号