首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterodimers of the 70 and 80 kDa Ku autoantigens (Ku70 and Ku80) activate the DNA-dependent protein kinase (DNA-PK). Mutations in any of the three subunits of this protein kinase (Ku70, Ku80 and DNA-PKcs) lead to sensitivity to ionizing radiation (IR) and to DNA double-strand breaks, and V(D)J recombination product formation defects. Here we show that the IR repair, DNA end binding and DNA-PK defects in Ku70-/- embryonic stem cells can be counteracted by introducing epitope-tagged wild-type Ku70 cDNA. Truncations and chimeras of Ku70 were used to identify the regions necessary for DNA end binding and IR repair. Site-specific mutational analysis revealed a core region of Ku70 responsible for DNA end binding and heterodimerization. The propensity for Ku70 to associate with Ku80 and to bind DNA correlates with the ability to activate DNA-PK, although two mutants showed that the roles of Ku70 in DNA-PK activation and IR repair are separate. Mutation of DNA-PK autophosphorylation sites and other structural motifs in Ku70 showed that these sites are not necessary for IR repair in vivo. These studies reveal Ku70 features required for double-strand break repair.  相似文献   

2.
Ku, the DNA binding component of DNA-dependent protein kinase (DNA-PK), is a heterodimer composed of 70 and 86 kDa subunits, known as Ku70 and Ku80 respectively . Defects in DNA-PK subunits have been shown to result in a reduced capacity to repair DNA double-strand breaks. Assembly of the Ku heterodimer is required to obtain DNA end binding activity and association of the DNA-PK catalytic subunit. The regions of the Ku subunits responsible for heterodimerization have not been clearly defined in vivo . A previous study has suggested that the C-terminus of Ku80 is required for interaction with Ku70. Here we examine Ku subunit interaction using N- and C-terminal Ku80 deletions in a GAL4-based two-hybrid system and an independent mammalian in vivo system. Our two-hybrid study suggests that the central region of Ku80, not its C-terminus, is capable of mediating interaction with Ku70. To determine if this region mediates interaction with Ku70 in mammalian cells we transfected xrs-6 cells, which lack endogenous Ku80, with epitope-tagged Ku80 deletions carrying a nuclear localization signal. Immunoprecipitation from transfected cell extracts revealed that the central domain identified by the GAL4 two-hybrid studies stabilizes and co-immunoprecipitates with endogenous xrs-6 Ku70. The central interaction domain maps to the internally deleted regions of Ku80 in the mutant cell lines XR-V9B and XR-V15B. These findings indicate that the internally deleted Ku80 mutations carried in these cell lines are incapable of heterodimerization with Ku70.  相似文献   

3.
Ku, a heterodimer of approximately 70 and approximately 80 kDa subunits, is a nuclear protein that binds to double-stranded DNA ends and is a component of the DNA-dependent protein kinase (DNA-PK). Cell lines defective in Ku80 belong to group XRCC5 of ionizing radiation-sensitive mutants. Five new independent Chinese hamster cell mutants, XR-V10B, XR-V11B, XR-V12B, XR-V13B and XR-V16B, that belong to this group were isolated. To shed light on the nature of the defect in Ku80, the molecular and biochemical characteristics of these mutants were examined. All mutants, except XR-V12B, express Ku80 mRNA, but no Ku80 protein could clearly be detected by immunoblot analysis in any of them. DNA sequence analysis of the Ku80 cDNA from these mutants showed a deletion of 252 bp in XR-V10B; a 6 bp deletion that results in a new amino acid residue at position 107 and the loss of two amino acid residues at positions 108 and 109 in XR-V11B; a missense mutation resulting in a substitution of Cys for Tyr at position 114 in XR-V13B; and two missense mutations in XR-V16B, resulting in a substitution of Met for Val at position 331 and Arg for Gly at position 354. All these mutations cause a similar, 5-7-fold, increase in X-ray sensitivity in comparison to wild-type cells, and a complete lack of DNA-end binding and DNA-PK activities. This indicates that all these mutations lead to loss of the Ku80 function due to instability of the defective protein.  相似文献   

4.
5.
Five cell lines selected for resistance to the cytotoxicity of inhibitors of DNA topoisomerase II have point mutations in the gene that codes for the M(r) 170,000 form of this enzyme. In each case, the mutation results in an amino acid change in or near an ATP binding sequence of the M(r) 170,000 isozyme of topoisomerase II. We used single-strand conformational polymorphism analysis to screen for similar mutations in other drug-resistant cell lines or in leukemic cells from patients previously treated with etoposide or teniposide. We also analyzed the region of the gene that codes for amino acids adjacent to the tyrosine at position 804 of topoisomerase II which binds covalently to DNA. CEM/VM-1, CEM/VM-1-5, and HL-60/AMSA human leukemic cell lines were used as controls; 3 of 3 known mutations were detected by migration differences of polymerase chain reaction products from the RNA extracted from these three lines. A previously unknown mutation was found in the tyrosine 804 region of the M(r) 170,000 topoisomerase II expressed by CEM/VM-1 and CEM/VM-1-5 cells. Sequence analysis showed that substitution of a T for a C at nucleotide 2404 resulted in an amino acid change of a serine for a proline at amino acid 802. No mutations in any of the ATP binding sequences or in the tyrosine 804 region were detected in polymerase chain reaction products from RNA extracted from human leukemia HL-60/MX2 or CEM/MX1 cells (both cell lines selected for resistance to mitoxantrone) or in human myeloma 8226/Dox1V cells (selected for resistance by simultaneous exposure to doxorubicin and verapamil). No mutations were detected in polymerase chain reaction products from RNA extracted from blasts of 15 patients with relapsed acute lymphocytic leukemia, previously treated with etoposide or teniposide. We conclude that: (a) single-strand conformational polymorphism analysis is useful for screening for mutations in topoisomerase II; (b) resistance to the cytotoxicity of inhibitors of DNA topoisomerase II is not always associated with mutations in ATP binding sequences or the active site tyrosine region of M(r) 170,000 topoisomerase II; and (c) mutations similar to those detected in drug resistant cells selected in culture have not been identified in blast cells from patients with relapsed acute lymphocytic leukemia, previously treated with etoposide or teniposide.  相似文献   

6.
Ku is a heterodimeric protein composed of 86 and 70 kDa subunits that binds preferentially to the double-stranded ends of DNA. Recent molecular characterization of ionizing-radiation sensitive (IRs) mutants belonging to the XRCC5 complementation group demonstrated the involvement of Ku in DNA double-strand break (DSB) repair and lymphoid V(D)J recombination. Here, we describe the isolation of a full-length hamster cDNA encoding the large subunit of the Ku heterodimer and demonstrate that the stable expression of this cDNA can functionally restore IR, Ku DNA end-binding activity and V(D)J recombination proficiency in the Chinese hamster IRs sxi-3 mutant. Moreover, we also demonstrate that sxi-3 cells are hypersensitive to etoposide, a DNA topoisomerase II inhibitor, and that resistance to this drug was restored by the Ku86 cDNA. These experiments suggest that a defect in the large subunit of the heterodimeric Ku protein is the sole factor responsible for the known defects of sxi-3 cells and our data of further support the role of Ku in DNA DSB repair and V(D)J recombination.  相似文献   

7.
A Chinese hamster ovary (CHO) cell line highly resistant to the non-cleavable complex-forming topoisomerase II inhibitor dexrazoxane (ICRF-187, Zinecard) was selected. The resistant cell line (DZR) was 1500-fold resistant (IC50 = 2800 vs 1.8 microM) to continuous dexrazoxane exposure. DZR cells were also cross-resistant (8- to 500-fold) to other bisdioxopiperazines (ICRF-193, ICRF-154, and ICRF-186), and somewhat cross-resistant (4- to 14-fold) to anthracyclines (daunorubicin, doxorubicin, epirubicin, and idarubicin) and etoposide (8.5-fold), but not to the other non-cleavable complex-forming topoisomerase II inhibitors suramin and merbarone. The cytotoxicity of dexrazoxane to both cell lines was unchanged in the presence of the membrane-active agent verapamil. DZR cells were 9-fold resistant to dexrazoxane-mediated inhibition of topoisomerase II DNA decatenation activity compared with CHO cells (IC50 = 400 vs 45 microM), but were only 1.4-fold (IC50 = 110 vs 83 microM) resistant to etoposide. DZR cells contained one-half the level of topoisomerase II protein compared with parental CHO cells. However, the specific activity for decatenation using nuclear extract topoisomerase II was unchanged. Etoposide (100 microM)-induced topoisomerase II-DNA complexes in DZR cells and isolated nuclei were similarly one-half the level found in CHO cells and in isolated nuclei. However, the ability of 500 microM dexrazoxane to inhibit etoposide (100 microM)-induced topoisomerase II-DNA covalent complexes was reduced 4- to 6-fold in both DZR cells and nuclei compared with CHO cells and nuclei. In contrast, there was no differential ability of aclarubicin or merbarone to inhibit etoposide-induced topoisomerase II-DNA complexes in CHO compared with DZR cells and isolated nuclei. It was concluded that the DZR cell line acquired its resistance to dexrazoxane mainly through an alteration in the topoisomerase II target.  相似文献   

8.
The DNA-dependent protein kinase (DNA-PK) consists of Ku70, Ku80, and a large catalytic subunit, DNA-PKcs. Targeted inactivation of the Ku70 or Ku80 genes results in elevated ionizing radiation (IR) sensitivity and inability to perform both V(D)J coding-end and signal (RS)-end joining in cells, with severe growth retardation plus immunodeficiency in mice. In contrast, we now demonstrate that DNA-PKcs-null mice generated by gene-targeted mutation, while also severely immunodeficient, exhibit no growth retardation. Furthermore, DNA-PKcs-null cells are blocked for V(D)J coding-end joining, but retain normal RS-end joining. Finally, while DNA-PK-null fibroblasts exhibited increased IR sensitivity, DNA-PKcs-deficient ES cells did not. We conclude that Ku70 and Ku80 may have functions in V(D)J recombination and DNA repair that are independent of DNA-PKcs.  相似文献   

9.
Heat shock prior, during, or immediately after ionizing radiation synergistically increases cell killing, a phenomenon termed hyperthermic radiosensitization. Recently, we have shown a constitutive DNA-binding factor in rodent cells that is inactivated by heat shock to be identical to Ku autoantigen. Ku, consisting of an Mr 70,000 (Ku70) and an Mr 86,000 (Ku80) subunit, is a heterodimeric nuclear protein and is the DNA-binding regulatory component of the mammalian DNA-dependent protein kinase DNA-PK. Recent genetic and biochemical studies indicate the involvement of Ku and DNA-PK in DNA double-strand break repair and V(D)J recombination. On the basis of these findings, we propose that heat-induced loss of the DNA-binding activity of Ku may lead to hyperthermic radiosensitization. To test this hypothesis, we examined and compared the DNA-binding activity of Ku, the DNA-PK kinase activity, and hyperthermic radiosensitization in rodent cells immediately after heat shock and during post-heat shock recovery at 37 degrees C. Our results show that the heat-induced loss of Ku-DNA binding activity correlates well with an increased radiosensitivity of the heat-shocked cells, and furthermore, the loss of synergistic interaction between heat and radiation parallels the recovery of the DNA-binding activity of Ku. On the other hand, the heat-induced decrease of DNA-PK activity did not correlate with hyperthermic radiosensitization. Our data, for the first time, provide evidence for a role of Ku protein in modulating the cellular response to combined treatments of heat shock and ionizing radiation.  相似文献   

10.
The DNA-dependent protein kinase (DNA-PK) complex is composed of a catalytic (DNA-PKcs), and a regulatory subunit (Ku70/Ku86 heterodimer). The expression and function of DNA-PK subunits was investigated in purified blood lymphocytes obtained from patients with chronic lymphocytic leukemia (CLL) either refractory to chemotherapy or untreated. Variations in DNA-PK activity were found amongst CLL samples by comparison to human cell lines. It was noticeable that the low DNA-PK activity was associated with samples from untreated patients that exhibited a sensitivity phenotype, determined in vitro, to the radiomimetic agent neocarcinostatin by comparison to samples from refractory patients. The regulation in DNA-PK activity was associated with Ku heterodimer expression while DNA-PKcs was unaffected. Moreover, the presence of an altered form of the Ku86 subunit was identified in samples with low DNA-PK activity. These results suggest a regulation process of the DNA-PK activity in fresh human cells.  相似文献   

11.
Mammalian cells defective in DNA end-joining are highly sensitive to ionizing radiation and are immunodeficient because of a failure to complete V(D)J recombination. By using cell-free extracts prepared from human lymphoblastoid cell lines, an in vitro system for end-joining has been developed. Intermolecular ligation was found to be accurate and to depend on DNA ligase IV/Xrcc4 and requires Ku70, Ku86, and DNA-PKcs, the three subunits of the DNA-activated protein kinase DNA-PK. Because these activities are involved in the cellular resistance to x-irradiation and V(D)J recombination, the development of this in vitro system provides an important advance in the study of the mechanism of DNA end-joining in human cells.  相似文献   

12.
The heterodimeric Ku protein, which comprises a 86 kDa (Ku86) amd a 70 kDa (Ku70) subunits, is an abundant nuclear DNA-binding protein which binds in vitro to DNA termini without sequence specificity. Ku is the DNA-targeting component of the large catalytic sub-unit of the DNA-dependent protein kinase complex (DNA-PK[CS]), that plays a critical role in mammalian double-strand break repair and lymphoid V(D)J recombination. By using electrophoretic mobility shift assays, we demonstrated that in addition to the major Ku x DNA complex usually detected in cell line extracts, a second complex with faster electrophoretic mobility was observed in normal peripheral blood lymphocytes (PBL) extracts. The presence of this faster migrating complex was restricted to B cells among the circulating lymphocyte population. Western blot analysis revealed that B cells express a variant form of the Ku86 protein with an apparent molecular weight of 69 kDa, and not the 86 kDa- full-length protein. Although the heterodimer Ku70/variant-Ku86 binds to DNA-ends, this altered form of the Ku heterodimer has a decreased ability to recruit the catalytic component of the complex, DNA-PK(CS), which contributes to an absence of detectable DNA-PK activity in B cells. These data provide a molecular basis for the increased sensitivity of B cells to ionizing radiation and identify a new mechanism of regulation of DNA-PK activity that operates in vivo.  相似文献   

13.
DNA-dependent protein kinase (DNA-PK), composed of p470 catalytic subunit and p85/p70 heterodimer of Ku autoantigen, is considered a critical enzyme in DNA double-strand break repair. We purified DNA-PK from human leukaemic MOLT-4 cells by successive column chromatography and separated into p470 and Ku subunits by ultracentrifugation in glycerol gradient. We studied hyperthermic stability of DNA-PK holoenzyme and its separated subunits to test a possible role of DNA-PK in hyperthermic radiosensitization. DNA-PK was found to lose its activity rapidly at hyperthermic 44 degrees C, and further, Ku subunits instead of p470 catalytic subunits were found to be sensitive to hyperthermia. These results indicate a possibility that hyperthermic radiosensitization is mediated through the heat lability of Ku subunits of DNA-PK, impairing repair of radiation-induced double-strand break of DNA.  相似文献   

14.
We have previously reported that the incision efficiency of the nucleotide excision repair (NER) reaction measured in vitro with cell-free human protein extracts was reduced by up to 80% on a linearized damaged plasmid DNA substrate when compared to supercoiled damaged DNA. The inhibition stemed from the presence of the DNA-end binding Ku70/Ku80 heterodimer which is the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). Here, the origin of the repair inhibition was assessed by a new in vitro assay in which circular or linear plasmid DNA, damaged or undamaged, was quantitatively adsorbed on sensitized microplate wells. The binding of two NER proteins, XPA and p62-TFIIH, indispensable for the incision step of the reaction, was quantified either directly in an ELISA-like reaction in the wells with specific antibodies or in Western blotting experiments on the DNA-bound fraction. We report a dramatic inhibition of XPA and p62-TFIIH association with UVC photoproducts on linear DNA. XPA and p62-TFIIH binding to DNA damage was regained when the reaction was performed with extracts lacking Ku activity (extracts from xrs6 rodent cells) whereas addition of purified human Ku complex to these extracts restored the inhibition. Despite the fact that DNA-PK was active during the NER reaction, the mechanism of inhibition relied on the sole Ku complex, since mutant protein extracts lacking the catalytic DNA-PK subunit (extracts from the human M059J glioma cells) exhibited a strong binding inhibition of XPA and p62-TFIIH proteins on linear damaged DNA, identical to the inhibition observed with the DNA-PK+ control extracts (from M059K cells).  相似文献   

15.
We characterized three human brain tumor cell lines (D54, HBT-20, and HBT-28) with respect to resistance to etoposide (VP-16), a topoisomerase II-reactive drug. All three cell lines were inherently resistant to VP-16 when compared to other human cell lines, with D54 showing the greatest resistance using colony formation assays. Resistance to VP-16 has been attributed to decreased drug uptake and changes in topoisomerase II; however, drug uptake and topoisomerase II protein levels (immunoblot) were no lower in D54 than in HBT-20 and HBT-28, cell lines relatively more sensitive to VP-16. More to the point, measurement of topoisomerase II-mediated DNA cleavage of cellular DNA after treatment with VP-16 showed that the topoisomerase II in these cells was active. These data indicate mechanisms other than those attributable to decreased drug uptake or altered topoisomerase II exist for clinical resistance to VP-16. VP-16-induced DNA cleavage has been associated with apoptosis in some cell lines; however, neither DNA laddering nor morphological changes characteristic of apoptosis were detected in these cell lines after treatment with VP-16. Bcl-2 and mutant p53 were present in these cells. Either of these conditions can prevent apoptosis and could explain a dissociation between the proximal mediator of VP-16-induced cytotoxicity (topoisomerase II-DNA complex formation) and cellular death.  相似文献   

16.
DNA-dependent protein kinase (DNA-PK or the scid factor) and Ku are critical for DNA end-joining in V(D)J recombination and in general non-homologous double-strand break repair. One model for the function of DNA-PK is that it forms a complex with Ku70/86, and this complex then binds to DNA ends, with Ku serving as the DNA-binding subunit. We find that DNA-PK can itself bind to linear DNA fragments ranging in size from 18 to 841 bp double-stranded (ds) DNA, as indicated by: (i) mobility shifts; (ii) crosslinking between the DNA and DNA-PK; and (iii) atomic-force microscopy. Binding of the 18 bp ds DNA to DNA-PK activates it for phosphorylation of protein targets, and this level of activation is not increased by addition of purified Ku70/86. Ku can stimulate DNA-PK activity beyond this level only when the DNA fragments are long enough for the independent binding to the DNA of both DNA-PK and Ku. Atomic-force microscopy indicates that under such conditions, the DNA-PK binds at the DNA termini, and Ku70/86 assumes a position along the ds DNA that is adjacent to the DNA-PK.  相似文献   

17.
The DNA-dependent protein kinase (DNA-PK) consists of a heterodimer DNA-binding complex, Ku70 and Ku80, and a large catalytic subunit, DNA-PKcs. To examine the role of DNA-PKcs in lymphocyte development, radiation sensitivity, and tumorigenesis, we disrupted the mouse DNA-PKcs by homologous recombination. DNA-PKcs-null mice exhibit neither growth retardation nor a high frequency of T cell lymphoma development, but show severe immunodeficiency and radiation hypersensitivity. In contrast to the Ku70-/- and Ku80-/- phenotype, DNA-PKcs-null mice are blocked for V(D)J coding but not for signal-end joint formation. Furthermore, inactivation of DNA-PKcs leads to hyperplasia and dysplasia of the intestinal mucosa and production of aberrant crypt foci, suggesting a novel role of DNA-PKcs in tumor suppression.  相似文献   

18.
19.
Drug resistance to anti-tumour agents often coincides with mutations in the gene encoding DNA topoisomerase II alpha. To examine how inactive forms of topoisomerase II can influence resistance to the chemotherapeutic agent VP-16 (etoposide) in the presence of a wild-type allele, we have expressed point mutations and carboxy-terminal truncations of yeast topoisomerase II from a plasmid in budding yeast. Truncations that terminate the coding region of topoisomerase II at amino acid (aa) 750, aa 951 and aa 1044 are localised to both the cytosol and the nucleus and fail to complement a temperature-sensitive top2-1 allele at non-permissive temperature. In contrast, the plasmid-borne wild-type TOP2 allele and a truncation at aa 1236 are nuclear localised and complement the top2-1 mutation. At low levels of expression, truncated forms of topoisomerase II render yeast resistant to levels of etoposide 2- and 3-fold above that tolerated by cells expressing the full-length enzyme. Maximal resistance is conferred by the full-length enzyme carrying a mutated active site (Y783F) or a truncation at aa 1044. The level of phosphorylation of topoisomerase II was previously shown to correlate with drug resistance in cultured cells, hence we tested mutants in the major casein kinase II acceptor sites in the C-terminal domain of yeast topoisomerase II for changes in drug sensitivity. Neither ectopic expression of the C-terminal domain alone nor phosphoacceptor site mutants significantly alter the host cell's sensitivity to etoposide.  相似文献   

20.
The DNA-dependent protein kinase (DNA-PK) is a heterotrimeric enzyme that binds to double-stranded DNA and is required for the rejoining of double-stranded DNA breaks in mammalian cells. It has been proposed that DNA-PK functions in this DNA repair pathway by binding to the ends of broken DNA molecules and phosphorylating proteins that bind to the damaged DNA ends. Another enzyme that binds to DNA strand breaks and may also function in the cellular response to DNA damage is the poly(ADP-ribose) polymerase (PARP). Here, we show that PARP can be phosphorylated by purified DNA-PK, and the catalytic subunit of DNA-PK is ADP-ribosylated by PARP. The protein kinase activity of DNA-PK can be stimulated by PARP in the presence of NAD+ in a reaction that is blocked by the PARP inhibitor 1, 5-dihydroxyisoquinoline. The stimulation of DNA-PK by PARP-mediated protein ADP-ribosylation occurs independent of the Ku70/80 complex. Taken together, these results show that PARP can modify the activity of DNA-PK in vitro and suggest that these enzymes may function coordinately in vivo in response to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号