首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
电铸制备铜-石墨复合材料的研究   总被引:1,自引:0,他引:1  
在酸性硫酸铜溶液中采用电铸技术制备了铜-石墨复合材料.表面活性剂、微粒浓度、电流密度和搅拌速度等工艺条件对微粒含量具有不同的影响.非离子表面活性剂对微粒共沉积具有较好的效果;随着微粒浓度增大,微粒含量也逐渐增大,最后趋于稳定值;电流密度增大使微粒含量降低;搅拌速度增大时微粒含量存在最大值.铜-石墨复合材料的硬度和摩擦系数随着微粒含量增大而减小,但是磨损量先是减小而后增大.摩擦过程中纯铜发生粘着磨损,铜-石墨复合材料却表现为剥层磨损.  相似文献   

2.
电沉积法制备金属基复合材料的发展动态   总被引:9,自引:1,他引:8  
评述了电沉积法制备金属基复合材料的国内外发展状况,介绍了电沉积法的制备工艺,以及由此制得的金属基复合材料的应用前景。  相似文献   

3.
电溶积法制备金属基复合材料的发展动态   总被引:1,自引:0,他引:1  
万怡灶  曹阳 《材料导报》1997,11(1):64-67
评述了电沉积法制备金属基复合材料的国内外发展状况,介绍了电沉积法的制备工艺,以及由此制得的金属基复合材料的应用前景。  相似文献   

4.
《材料保护》2005,38(7):68-68
一种复合电沉积制备镍基纳米碳管复合材料的方法,以能够沉积镍或者镍合金的各种常用镀液体系作为基础镀液,将经过常规钝化除杂处理的纳米碳管作为添加剂进入其中,构成能够沉积金属基纳米碳管复合材料的新型复合镀液,然后按照一般电镀/化学镀的操作方法,借助通电或者自发化学反应过程促使镍或者镍合金在一定的基体上沉积的同时,使纳米碳管与金属共沉积,制备镍基或者镍合金基纳米碳管复合材料。  相似文献   

5.
电化学方法制备金属基复合材料研究进展   总被引:2,自引:0,他引:2  
王周成  倪永金  唐毅 《材料导报》2006,20(7):51-53,57
金属基复合材料具有高比强度、高比模量、高硬度、耐高温等一系列优点,在现代航空、航天及武器装备等领域具有广阔的应用前景.综述了近年来电化学方法制备金属基复合材料的研究进展,具体介绍了电化学渗浸、连续分步电沉积和复合电沉积3种不同的电化学工艺过程.  相似文献   

6.
综述了复合沉积技术用于制行颗粒增强耐磨材料的研究发展概况,复合电沉积机理及用复合电沉积法制备PMMC的特点,介绍了复合电沉积在制备耐磨材料特别是铜基耐磨材料方面的发展应用,对铜基颗粒增强复合镀层在汽车轴瓦中的应用作了展望。  相似文献   

7.
镍基碳纳米管复合电沉积薄膜的制备和机械性能分析   总被引:1,自引:0,他引:1  
采用直径为10~20nm的碳纳米管作为增强相材料,采用间歇超声复合空气搅拌,通过复合电沉积技术,制备了碳管均匀分散,表面平整连续的镍基碳纳米管复合薄膜.通过扫描电子显微镜(SEM),对镀层的表面形貌进行了观察,并用表面轮廓仪,对镀层的粗糙度进行了测量.通过显微硬度计和纳米硬度计对镀层的硬度分别进行了测量,采用一种新型的微拉伸器件对复合薄膜的拉伸性能进行了测量.通过实验发现,采用间歇超声复合空气搅拌方式在镍镀层中复合碳纳米管,可以明显的提高镀层的硬度,并且当镀层中碳纳米管体积百分比在4%左右时,镀层硬度最大.同时镀层的抗拉强度也有所提高,通过用SEM对镀层断裂处观测,验证了碳纳米管的增强效应.  相似文献   

8.
综述了复合电沉积技术用于制备颗粒增强耐磨材料的研完发展概况,复合电沉积机理及用复合电沉积法制备PMMC的特点.介绍了复合电沉积在制备耐磨材料特别是铜基耐磨材料方面的发展应用,对铜基颗粒增强复合镀层在汽车轴瓦牛的应用作了展望.  相似文献   

9.
纳米复合电沉积技术及机理研究的现状   总被引:4,自引:1,他引:4  
简介了纳米复合镀层的性能即纳米复合镀层比常规复合镀层具有更高的硬度、更优良的耐磨性和耐蚀性,重点介绍了复合电沉积机理的3种理论和6个数学模型,指出了各种模型的优点和不足之处,指出了需要完善的数学模型的研究方向.  相似文献   

10.
Ni-P-金刚石三元化学复合镀工艺及沉积机理   总被引:3,自引:1,他引:3  
研究了工艺条件对Ni-P-金刚石三元化学复合镀镀速及镀层中金刚石含量的影响,并探讨了复合镀层的沉积机理。结果表明:温度、pH值升高,镀速迅速增加,改变金刚石加入量对镀速的影响很小;镀层金刚石含量受温度影响较,而随pH值增加先增后减。随金刚石加入量的增加,镀层金刚石含量先是迅速增加,以后增加趋势越来越缓慢,两者呈抛物线型关系。金刚石表面ζ电位为负值,表明金刚石没有吸附镀液中的正离子,其颗粒的吸附不是依靠电场力作用,而主要是依靠机械力的作用。  相似文献   

11.
金属基复合材料界面问题   总被引:50,自引:1,他引:50  
金属基复合材料都要在基体合金熔点附近的高温下制备。在制备过程中,纤维,晶须、颗粒等增强体与基体净发生程度不同的相互作用和界面反应,形成各种结构的界面。界面结构和性能对金属基复合材料的的性能起着决定性作用,深入研究的掌握界面反应和界面影响性能的规律,有效地控制界面的结构和性能,是获得高性能金属基复合材料的关键。  相似文献   

12.
金属基复合材料微区力学性能的不均匀现象   总被引:3,自引:0,他引:3  
利用超显微硬度仪测量纤维,颗粒增强铝基复合材料内不同微区的超显微硬度,发现界面区附近超显微硬度值明显增高,显微硬度值与基体,增强体的性质,界面性能,增强体的尺寸,形状,分布有密切关系。微区力学性能的不均匀性将影响复合材料的宏观性能和尺寸稳定性。  相似文献   

13.
自生TiC增强钛基复合材料的微观组织   总被引:6,自引:0,他引:6  
采用反应自生法制备了TiC颗粒增强钛合金基复合材料,研究了复合材料的相组成和微观组织。在Ti-6Al-2C合金中存在Ti和TiC两种相。TiC权树枝状初生Tic和短棒状共晶TiC两种开头存在,其中共晶TiC主要存在于晶界,特别是三角晶界处。TiC晶格常数的计算结果表明TiC的衍射峰存在一定的偏移,主要是由于存在于TiC中的C空位引起晶格畸变。随着Al含量的增加,初生TiC由发达粗大的树枝晶变为不发达的树枝晶,当Al含量为35%时变为短棒状和薄片状的TiC。基体组织也相应地由单一的Ti基体变为Ti和Ti3Al的两相基体以及Ti3Al和TiAl两相基体。根据相图分析了组织变化的主要原因。  相似文献   

14.
SiCw/6061Al复合材料冲击破坏行为   总被引:1,自引:0,他引:1       下载免费PDF全文
本文用夏比冲击试验(Instrumented Charpy Testing)与SEM断口分析研究了SiCw/6061Al复合材料的冲击破坏行为.与SiCw是混乱分布的铸态SiCw/6061Al复合材料相比,挤压变形后材料的冲击韧性明显提高.热挤压变形改善了材料的性能.研究观察发现了分层开裂的现象.本文详细讨论了SiCw/6061Al复合材料的冲击断裂方式、比较了变形前后冲击破坏方式的差异,并分析了热挤压变形后韧性提高的原因.  相似文献   

15.
介绍了以钢为基座, 青铜粉为过渡层, 聚甲醛塑料为表面层的三层结构复合材料的复合 加工工艺及其工艺对性能的影响。试验的结果表明, 在一定的温度范围内, 制品的表面硬度随压制 温度的升高而增加, 随塑料层厚度的增大而减小; 在一定的范围内, 青铜粉的粒径越大, 塑料层与 钢背间的结合强度越大, 且表面硬度也越大, 摩擦系数也越小。   相似文献   

16.
纤维增强金属基复合材料液相浸渗充填过程   总被引:13,自引:0,他引:13       下载免费PDF全文
液相浸渗法是制造纤维增强金属基复合材料的先进工艺,其浸渗充填过程是复合材料的组织和性能的主要决定因素之一。本文通过纤维增强金属基复合材料液相浸渗填充过程阻力及充填形式的研究,发现纤维分布状态及纤维与基体的润湿性决定着浸渗充填形式。探讨了通过控制纤维分布状态、改善纤维与基体的润湿性和优化工艺参数等方法,以控制浸渗充填过程,获得高性能复合材料的途径。  相似文献   

17.
本文用有限元法研究了具有基体裂纹的纤维增强复合材料内的应力传递问题.假设纤维与基体的界面为非理想的,文中运用“弹簧层”模型首先分析了在不同的组分弹性模量比、纤维体积含量与边界约束条件下,界面相性态对复合材料内的应力传递的影响,然后进一步考察了在几种典型的损伤模式下界面附近的应力分布情况.  相似文献   

18.
碳化硼颗粒/镁合金复合材料的工艺与性能   总被引:7,自引:0,他引:7       下载免费PDF全文
本文探索了制造碳化硼颗粒/镁合金(B4Cp/ZM5)复合材料的挤压铸造工艺和复合材料坯件的二次加工性能,测试了B4Cp/ZM5的抗压强度、硬度、密度等性能,结果表明:碳化硼颗粒/镁合金复合材料具有低密度、高强度、高硬度、良好的成型性能和二次加工性能。  相似文献   

19.
SiCp/Al复合材料的界面优先溶解   总被引:1,自引:0,他引:1  
本文报导了SiCp/Al复合材料在NaCl水溶液中的增强体/基体界面优先溶解(IPD)现象。计算了淬火时形成的界面附近基体的塑性变形区尺寸,理论分析表明IPD系由界塑性区加速溶解引起,考察了IPD在复合材料腐蚀中的作用,发现IPD能使高SiC含量材料的均匀溶解,并能抑制点蚀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号