首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
核壳结构SrFe12O19NiFe2O4复合纳米粉体的吸波性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以Fe(NO3)3、 Ni(NO3)2和Sr(NO3)2为主要原料, 通过两步柠檬酸盐溶胶-凝胶法, 制备出核-壳结构SrFe12O19-NiFe2O4磁性纳米复合粉体。采用XRD、 TEM、 VSM及矢量网络分析仪对合成的粉体的结构、 形貌及吸波性能进行了分析研究。结果表明, 复合粉体的相结构与NiFe2O4含量有关, 当SrFe12O19与NiFe2O4的质量比为1∶2、 烧结温度为1050℃时, 复合纳米粉体的相与NiFe2O4接近, 核-壳结构SrFe12O19-NiFe2O4纳米复合粉体的饱和磁化强度(Ms)(51.4 emu/g)比单体SrFe12O19纳米粉体 (42.6 emu/g)的大; 但矫顽力(Hc) (336 Oe)比单体SrFe12O19纳米粉体的小, 在SrFe12O19 与NiFe2O4的矫顽力5395~160 Oe之间。在频率为8~18 GHz范围内, 微波吸收逐渐增强, 当频率为12 GHz时, SrFe12O19-NiFe2O4纳米复合粉体的微波吸收达到最大值-9.7 dB, 是一种性能优良的吸波材料。   相似文献   

2.
通过一种简便的方法制备氧空位缺陷的氢化TiO2包覆核壳结构C/Fe3O4@rGO(H-TiO2/C/Fe3O4@rGO)复合材料,作为锂离子电池(lithium-ion batteris, LIBs)高性能阳极材料。TiO2在Li+脱嵌过程中体积膨胀系数约为4%,可缓解Fe3O4在充放电过程中的体积膨胀,提高阳极材料结构的稳定性。同时,通过氢化处理改善TiO2较低的电导率(约1×10-12 S·m-1)。H-TiO2/C/Fe3O4@rGO在0.3 A·g-1的电流密度下循环200周次后比容量为867 mAh·g-1,在1 A·g-1的电流密度下循环700周次的比容量为505...  相似文献   

3.
以具有优异磁学特性的锶铁氧体(SrFe12O19)粒子为磁性基体, 负载固体酸制备锶磁性固体酸催化剂S2O82-/ZrO2-SrFe12O19。利用XRD、 比表面积测试(BET)、 振动样品磁强计(VSM)、 IR等表征手段, 研究了磁性催化剂的表面性质和催化性能。结果表明: SrFe12O19的掺入提高了介稳的四方晶型t-ZrO2的热稳定性; 固体酸的磁性能较好, 饱和磁化强度(Ms)在30.0 emu·g-1左右, 矫顽力(Hc)大于3900 G, 有利于磁分离和重复使用; BET表面积为16.0 m2·g-1, 平均孔径为8.16 nm, 属于介孔磁性材料; 以乌桕油与甲醇的酯交换为探针反应的研究表明, 该固体酸能在较短时间内有效发挥催化作用。  相似文献   

4.
该文使用高锰酸钾浓硫酸制备氧化石墨,并通过共碱还原 - 沉淀的方法制备石墨烯(rGO)与 Ba Fe12O19络合物,脱水后形成 r GO/Ba Fe12O19复合吸波材料。结果表明,r GO 片层上稳定嫁接了纳米铁氧体 Ba Fe12O19,利用铁氧体 Ba Fe12O19磁损耗和 r GO 介电损耗之间的协同作用,rGO/BaFe12O19纳米复合材料表现出了高效的吸波性能。电磁参数测试表明,当 r GO 含量为16.7% 时,在3 mm 厚度下,其损耗值能达到 -43.3 dB,在3.6 GHz~17.2 GHz的波段内,样品的损耗值几乎全部低于 -10.0 dB。通过添加不同剂量的 rGO 与铁氧体 Ba Fe12O19来探究,找到 r GO 与 BaFe12O19最佳的添加...  相似文献   

5.
在电磁屏蔽领域,铁氧体是常用的涂覆型吸波剂,但以Fe3O4为首的铁氧体存在一些不足。本研究采用冷冻干燥的方法成功制备了花苞状Ti3C2Tx/Fe3O4复合材料,Ti3C2Tx/Fe3O4复合材料的花苞状结构对电磁波的多重反射、界面极化和电磁耦合作用等使复合材料具有更好的微波吸收性能。当频率为6.74 GHz时,最小反射损耗达到-51.41 dB,对应的匹配厚度为2.8 mm,这意味着它可以吸收99.999 28%的电磁波。本研究中特殊的花苞状Ti3C2Tx/Fe3O4复合材料表现出优异的吸波性能,在电磁屏蔽领域具有良好的应用前景。  相似文献   

6.
为了改善传统碳材料的吸波性能,获得具有多元吸波机理的吸波材料,本文通过化学气相沉积法在碳纤维表面原位生长碳纳米管,后采用溶剂热反应在CNTs@Cf上生成Fe3O4纳米颗粒,制备出了Fe3O4/CNTs@Cf复合材料,并对其吸波性能进行研究,分析了复合材料的合成机理和吸波机理。其反射损耗在C波段可达-43.02 dB,随着Fe3O4纳米颗粒含量的进一步增加,其吸波性能下降。  相似文献   

7.
为了利用Fe3O4的磁响应性及石墨相C3N4(g-C3N4)优良的光催化活性,首先采用高温热聚合法,以尿素为前驱体制备g-C3N4,然后采用水热法合成了可磁分离Fe3O4/g-C3N4复合材料。利用TEM、XRD、TGA、BET和振动样品磁强计(VSM)等多种测试手段表征分析Fe3O4/g-C3N4复合材料的形貌、晶型结构、比表面积、成分、饱和磁化强度等。通过模拟太阳光下Fe3O4/g-C3N4复合材料光催化吸附降解亚甲基蓝(MB)的实验,评价了Fe3O4/g-C3N4复合材料的吸附性能及光催化性能。结果表明,可磁分离Fe3O4/g-C3N4复合材料具有较大的比表面积,约为71.89 m2/g;且具有较好的磁性,饱和磁化强度为18.79 emu/g,可实现复合材料的分离回收;光照240 min时,Fe3O4/g-C3N4复合材料对MB的去除率为56.54%。所制备的Fe3O4/g-C3N4复合材料具有优良的吸附性能、光催化活性和磁性,并可通过外加磁场进行分离与回收。  相似文献   

8.
Fe3O4/ 聚吡咯复合材料的制备及表征   总被引:22,自引:3,他引:19       下载免费PDF全文
以化学沉淀法制备Fe3O4 纳米粒子, 采用乙醇对Fe3O4 纳米粒子表面进行处理, 使其表面有机化, 然后通过乳液原位复合制备Fe3O4 / 聚吡咯复合材料。利用TEM, XPS, 四探针测试仪和震荡磁力计对其进行表征和检测。结果表明: 经醇处理的Fe3O4 纳米粒子的分散性得到明显改善, Fe3O4 纳米粒子被包覆在聚吡咯层内, 包覆层厚度为10 nm 左右, 复合材料具有优良的电性能和磁性能, 电导率e= 7. 69 s/ cm~13. 6 s/ cm, 饱和磁强度Ms= 12. 06 emu/ g~24. 38 emu/ g, 矫顽力Hc= 11 Oe~41 Oe。其环境稳定性明显优于纯聚吡咯。   相似文献   

9.
实现结构可控、均匀包覆是制备核-壳复合材料的关键。采用离子交换法完成了磺化聚苯乙烯(PSS)表面Na+与溶液中Fe2+和Fe3+的交换,于碱性条件下制备了PSS表面负载Fe3O4(PSS@Fe3O4)的磁性复合颗粒。通过称重法计算了Fe3O4最大包覆率;通过振动样品磁强计(VSM)测试了不同负载含量下PSS@Fe3O4复合颗粒的磁性能;通过XRD、衰减全反射-FTIR (ATR-FTIR)、SEM-EDS分析了PSS@Fe3O4磁性复合颗粒的化学组成和微观结构。结果表明,随着Fe2+/Fe3+浓度增加,PSS@Fe3O4磁性颗粒的饱和磁化强度也随之增大,最大饱和磁化强度为7.51 emu/g,并具有明显的磁响应性;Fe3O4均匀包覆在PSS表面,最大包覆率为8.3 wt%。PSS@Fe3O4磁性复合颗粒有望用于磁流变、医学及水处理领域。   相似文献   

10.
为改善氧化石墨烯(GO)/Fe3O4复合材料的分散程度,利用三苯基膦(PPh3)对GO表面进行功能化改性得到改性氧化石墨烯(GOP),然后采用共沉淀法一步合成GOP/Fe3O4复合材料。通过场发射SEM、高分辨TEM、XRD、FTIR、Raman和VSM对GOP/Fe3O4复合材料的形貌、结构和磁性能进行表征。利用矢量网络分析仪(PNA)测试了GOP/Fe3O4复合材料的电磁参数并模拟计算其对电磁波的吸收性能。结果显示:GOP/Fe3O4复合材料的最大电磁波吸收强度值达到-25.4 dB,有效吸收频宽为6.0 GHz,较未改性GO/Fe3O4复合材料均有大幅度提高。   相似文献   

11.
The composite nanofibers of SrTiO3/SrFe12O19 with a molar ratio of 1:1 and diameter about 120 nm were prepared by electrospinning. Effects of calcination temperature on the formation, crystallite size, morphology and magnetic property were studied by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The binary phase of strontium ferrite and titanate was formed after being calcined at 900℃ for 2 h and the composite nanofibers were fabricated from nanograins of SrTiO3 about 24 nm and SrFe12O19 around 33 nm. The crystallite sizes for the nanofibers increase with increasing calcination temperature and the addition of SrTiO3 has an obvious suppression effect on SrFe12O19 grain growth. The specific saturation magnetization and remanence tend to increase with the crystallite size. With increasing calcination temperature from 900 to 1050℃, the coercivity increases initially, achieving a maximum value of 520.2 kA·m-1 at 950℃, and then shows a reduction tendency.  相似文献   

12.
通过N-异丙基丙烯酰胺与丙烯酸钠共聚包覆四氧化三铁颗粒制备了温敏磁性吸水树脂。首先采用共沉淀法制备了磁性Fe_3O_4纳米粒子,接着将Fe_3O_4纳米粒子、N-异丙基丙烯酰胺和丙烯酸钠通过水溶液自由基共聚法制备成温敏磁性吸水树脂。利用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和热重分析(TG)对所得样品进行了表征测试。通过温度敏感性、溶胀性能和退胀性能的研究发现,温敏磁性吸水树脂的临界溶解温度(LCST)为50℃左右,溶胀吸水倍率为116.74g/g,70℃下30 min能退去质量分数约为77.90%的水分,表现出了良好的吸水性和温敏性。充分溶胀的温敏磁性吸水树脂经过超声30min后Fe_3O_4含量小幅降低,表明其磁性相对稳定。  相似文献   

13.
静电纺丝技术是一种新颖、高效且简单的制备连续纳米纤维的方法,纳米复合纤维膜的优异特点赋予了纳米吸波剂新的吸波通道。本文采用静电纺丝工艺制备Fe3O4/PEK-C纳米复合纤维膜,利用SEM和TGA表征纳米复合纤维膜的微观形貌和热稳定性,用矢量网络分析仪测试样品在8.2~12.4 GHz的电磁参数与吸波性能。结果表明,Fe3O4/PEK-C纳米复合纤维膜呈现出超细纤维彼此交织构成的立体网络结构,其热稳定性、复介电常数和复磁导率均随着Fe3O4含量的增加而增加,介电损耗和磁损耗得到加强。当纳米复合纤维膜的厚度为1.8 mm时,其反射损耗在整个测试波段均处于-5 dB以下,-10 dB以下有效吸收频宽为2 GHz,频率在8.6 GHz处吸收强度达到最大值-15.4 dB。预期可作为隐身复合材料的吸波功能层。  相似文献   

14.
环境监测、食品工业、临床、制药等领域对过氧化氢(H_2O_2)的快速、准确检测有极大的需求,而电化学检测方法由于灵敏度高、响应快、检测限低等特点被认为是最理想的H_2O_2检测方法.本文利用电化学沉积的方法将Pd纳米颗粒沉积到四氧化三铁/石墨烯(Fe_3O_4/rGO)纳米复合材料修饰的玻碳电极表面,形成基于新型磁性纳米复合材料的H_2O_2无酶传感器;并采用循环伏安和计时安培电流等方法对修饰电极的电化学性能进行了表征.结果表明:制备的Pd/Fe_3O_4/r GO/GCE对H_2O_2的催化还原显示出较好的电催化活性,Pd纳米颗粒和Fe_3O_4/rGO在催化H_2O_2还原的过程中表现出了良好的协同作用.测定H_2O_2的线性范围为0.05~1 m M和1~2.6 m M两段,最低检测限达到3.918μM(S/N=3).并且该传感器具有较高的灵敏度和较好的重现性和抗干扰性,具有一定的实际应用价值.  相似文献   

15.
以自制碳酸锶(SrCO3)和钛酸丁酯为原料,采用超声波技术制备了以锶铁氧体(SrFe12O19)为载体的锶磁性光催化剂(TiO2-SrFe12O19)。采用XRD、IR、VSM、N2吸附实验等手段研究了催化剂的表面性质和磁学特性。结果表明,该催化剂的平均晶粒尺寸在20~30nm之间,比表面积为44.8m2/g,平均孔径为7.09nm,属于介孔磁性材料;饱和磁化强度(Ms)为12.9A.m2/kg,矫顽力(Hc)为120.9kA/m,易于磁分离和重复利用。催化剂对亚甲基蓝(MB)的催化降解脱除率为94.7%,且重复使用3次,催化降解效率不低于88%,表明催化性能稳定,重复使用效果良好。  相似文献   

16.
通过水热法合成复合金属氧化物SnO_2/Fe_3O_4粒子电极,然后采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、磁滞回线等技术分别对粒子电极的晶体组分、形貌、元素组成和分子结构以及粒子电极的磁性特征进行表征。采用循环伏安法分析了三维电极系统的电化学性能,并进行了电催化氧化降解罗丹明B(RhB)的实验。结果表明,SnO_2/Fe_3O_4粒子电极负载稳定、导电性强、便于回收再利用,有利于电催化氧化降解反应。三维电极降解罗丹明B的析氧电流高于其他电极体系,电催化活性效果明显,90min内罗丹明B的降解率为100%、TOC去除率为83%,反应中产生的·OH是降解有机物的主要活性基。粒子电极在重复利用5次的情况下,对罗丹明B的降解率仍保持93%以上、TOC去除率保持在77%以上,具有稳定的电催化性能。  相似文献   

17.
采用改进的氧化沉淀法在羧甲基纤维素(CMC)溶液中制备了以磁性纳米Fe3O4为核心,外包CMC的复合磁性纳米粒子。用透射电镜、X射线衍射、红外光谱、Zeta电位和震动样品磁强计对复合粒子进行了表面形貌、结构和磁学的表征。实验结果表明,CMC-Fe3O4复合纳米粒子为反尖晶石型,平均粒径约为40 nm;CMC在Fe3O4粒子表面是化学吸附;在相同pH值下,CMC-Fe3O4的表面Zeta电位低于纯相Fe3O4;CMC-Fe3O4的饱和磁化强度为36.74 emu.g-1;CMC-Fe3O4复合粒子在土壤介质中的过滤系数约为0.03 cm-1;在10 cm土柱渗透实验中,72%的CMC-Fe3O4复合粒子悬浊液穿过了土壤介质。  相似文献   

18.
Fe3O4 纳米复合粒子研究   总被引:17,自引:1,他引:16       下载免费PDF全文
制备了酞菁镍(N iPc) 2Fe3O4 纳米复合粒子, 研究了其化学稳定性和磁性能。结果表明,N iPc 在Fe3O4 纳米粒子表面形成了复合层, 并且它们之间形成了一定程度的化学键。N iPc 复合层可有效地保护Fe3O4 纳米粒子不被空气氧化, 显著提高了其抗氧化能力, 并降低了其矫顽力。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号