首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three human hepatocyte cultures have been developed from specimens of normal human liver, in each case from an infant or child, by coculture with liver epithelial cells from 6-day-old rat pups in a complex growth medium. In the established cultures hepatocytes predominate and maintain typical hepatocellular morphology by light microscopy and albumin secretion into supernatant medium. The activity of ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) basally and after treatment with polycyclic aromatic hydrocarbons was measured spectrofluorometrically in cell homogenates from each culture. Very low levels of EROD and MROD activity were found in each culture without induction [EROD: 1.78 +/- 0.71 (mean +/- SE) pmol/min/mg protein; MROD: 1.33 +/- 0.10 pmol/min/mg protein]. After treatment with 10 microM dibenz (a,h)anthracene x 48 hr, EROD and MROD activities rose approximately 20- to 50-fold. When the basal and induced enzyme activities were remeasured 2 months later, results were essentially the same. Incubation with 10 microM benz(a)anthracene x 48 hr also led to induction of EROD and MROD activities. We believe that these cultures can be regarded as human hepatocyte lines, which conserve human hepatic polycyclic aromatic hydrocarbon-inducible P-450s, most likely including P-450 1A2.  相似文献   

2.
7-Ethoxycoumarin (EC) is widely used as a model substrate for monooxygenase function, its O-deethylation representing cytochrome P450 (P450) activity mainly of 1A but also of 2B isoforms. Reports on investigations of its own capacity to induce or suppress P450 activities, however, have not been found in biomedical literature. To avoid the influence of in vivo pharmacokinetics, studies can well be undertaken with liver slice incubation. Therefore in the present investigation precision-cut rat liver slices from male 43-63-day-old male HAN:Wistar outbred rats were incubated at 30 degrees C in carbogen saturated William's Medium E for 24 h. EC was added previously to final concentrations of 10, 25, 50, 75 or 100 microM. After incubation, homogenate was prepared from slices and used for model reactions (7-ethoxyresorufin O-deethylation [EROD] and 7-pentoxyresorufin O-depentylation [PROD]). EROD, indicating activities of 1A isoforms, was enhanced by incubation with EC at 25 and 50 microM to about doublefold but showed control or lower values at 75 and 100 microM. Incubation with beta-naphthoflavone in comparison led to variable increases (3-5-fold of controls). For PROD as an indicator of the phenobarbital inducible P450 isoforms 2B1 and 2B2 no enhancement was found, but a decrease by incubation with 75 and 100 microM EC. To further investigate the correlation between enzyme activity and gene expression after slice incubation, P450 1A1 mRNA content was measured by RT-PCR. Induced gene expression for 1A1 was seen with different EC concentrations to a variable extent, though not as strong as with BNF. Similar incubation with 4-methyl-7-ethoxycoumarin revealed an even stronger induction of EROD activity with maxima at about 10-32 microM, reaching BNF values. In contrast incubation with 7-benzyloxycoumarin had no evident inducing or suppressing effect, neither on EROD nor on PROD activity.  相似文献   

3.
Indole-3-carbinol (I3C) is a major component of Brassica vegetables, and diindolylmethane (DIM) is the major acid-catalyzed condensation product derived from I3C. Both compounds competitively bind to the aryl hydrocarbon (Ah) receptor with relatively low affinity. In Ah-responsive T47D human breast cancer cells, I3C and DIM did not induce significantly CYP1A1-dependent ethoxyresorufin O-deethylase (EROD) activity or CYP1A1 mRNA levels at concentrations as high as 125 or 31 microM, respectively. A 1 nM concentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced EROD activity in these cells, and cotreatment with TCDD plus different concentrations of I3C (1-125 microM) or DIM (1-31 microM) resulted in a > 90% decrease in the induced response at the highest concentration of I3C or DIM. I3C or DIM also partially inhibited (< 50%) induction of CYP1A1 mRNA levels by TCDD and reporter gene activity, using an Ah-responsive plasmid construct in transient transfection assays. In T47D cells cotreated with 5 nM [3H]TCDD alone or in combination with 250 microM I3C or 31 microM DIM, there was a 37 and 73% decrease, respectively, in formation of the nuclear Ah receptor. The more effective inhibition of induced EROD activity by I3C and DIM was due to in vitro inhibition of enzyme activity. Thus, both I3C and DIM are partial Ah receptor antagonists in the T47D human breast cancer cell line.  相似文献   

4.
PS-6 unleaded gasoline (UG) and methyl tert-butyl ether (MTBE), an UG additive, with long-term exposure at high concentrations increased liver tumors selectively in female mice. PS-6 UG is a liver tumor promoter in N-nitrosodiethylamine-initiated female mice and produces short-term effects potentially relevant to its tumor promoting ability. The new formulation of UG (91-01) and MTBE were evaluated for similar short-term effects in mouse liver. Mice were exposed to 7814 ppm MTBE, 2014 ppm 91-01 UG, or 2028 ppm PS-6 UG vapor for 3 or 21 days, 6 hr/day, 5 day/week. Relative liver weights increased and uterine weights decreased in MTBE-, 91-01 UG-, and PS-6 UG-exposed mice. Because the decrease in relative uterine weight is suggestive of hormonal modulation, we evaluated the effects of MTBE, 91-01 UG, and PS-6 UG in vivo on hepatic 17-beta estradiol metabolism in vitro. Gavage treatment with either blend of UG and with MTBE increased estrogen metabolism in isolated mouse hepatocytes. Hepatic microsomal P450 activity was assessed by 7-pentoxyresorufin-O-dealkylase (PROD) and 7-ethoxyresorufin-O-deethylase (EROD) activities. Similar increases in P450 content and PROD and EROD activities were observed in all exposed mice as compared to controls. No hepatoxicity was observed in any treatment group. The hepatic labeling index, as measured by the incorporation of 5-bromo-2'-deoxyuridine, was increased in all exposed mice at 3 days but not 21 days, indicating that MTBE and 91-01 UG are also hepatic mitogens. These data demonstrate that a newer blend of UG and the UG additive MTBE elicit short-term effects similar to those of PS-6 UG. Given that these effects are potentially related to tumor promotion and the general lack of genotoxic activity, MTBE and 91-01 UG may exhibit tumor promoting activity similar to that seen with PS-6 UG. Since the liver is under multihormonal control, the increase in hepatic estrogen metabolism and uterine effects supports a potential role for endocrine modulations in both MTBE-and UG-induced hepatocarcinogenesis.  相似文献   

5.
Allylamine (AA) is an electrophilic amine with a long history of experimental usage because of its extremely potent and relatively specific cardiovascular toxicity; it has been utilized in a variety of experimental models attempting to mimic human atherosclerotic lesions, myocardial infarction, and vascular injury. Even though the exact mechanisms by which AA causes vascular lesions remain unresolved, recent studies on the acute effects of AA exposure in rats strongly suggest that deamination to the aldehyde acrolein, oxidative stress, and the resultant increase in lipid peroxidation, generation of .OH radicals, and acute depletion of glutathione (GSH) may be some of the causative factors in AA-induced vascular lesions. Since glutathione S-transferase 8-8 (GST8-8) of rat belongs to a distinct subgroup of GST isozymes involved in the detoxification of products of lipid peroxidation, we designed studies to examine the effects of AA exposure on this GST isoform in rat aorta using Western blotting and immunohistochemical techniques. The results of these studies demonstrate that GST8-8 is expressed in rat aorta and is dramatically induced upon AA exposure. By immunohistochemistry, GST8-8 was localized in the smooth muscle cells of the vascular media which is believed to be the site of metabolism of AA. A significant increase in gamma-glutamylcysteine synthetase activity and GST activity toward 4-hydroxynonenal and acrolein, which are preferred substrates of GST8-8, was seen as early as 3 days following AA treatment. Alterations in GSH and other GSH-related enzymes at 3 and 10 days support the concept that--upon AA exposure--aortic defense mechanisms respond early and induction of GSH biosynthesis and rat GST8-8 occur to alleviate the toxic effects of acrolein, a major, genotoxic product of AA metabolism. The presence of GST8-8 in the vasculature, which is constantly exposed to products of lipid peroxidation, and its induction by AA, suggest that GST8-8 plays a key role in protecting blood vessels against oxidative stress and hence, may be involved in the atherogenic process.  相似文献   

6.
The in vivo and in vitro effects of the insecticide deltamethrin (DM) on hepatic cytochrome P450 (Cyt P450) monooxygenase were examined in adult carp. The in vivo experiments were carried out with 0.2 microgram/l DM at 20 degrees C. The changes in the hepatic microsomal Cyt P450 content and the Cyt P450-dependent monooxygenase activities were studied in DM-treated fish. Although there were no changes in the Cyt P450 content during the exposure time, after treatment for 24 h all the investigated isoenzyme activities (para-nitrophenetole-O-deethylase, p-NPOD; aminopyrene-N-demethylase, APND; ethylmorphine-N-demethylase, EMND; 7-ethoxycoumarin-O-deethylase, ECOD; and ethoxyresorufin-O-deethylase, EROD) were significantly inhibited. After 72 h, all the activities were still lower than in the control animals. In vitro incubation of liver microsomes with DM led to a concentration-dependent decrease in total microsomal Cyt P450 content. A complete loss of Cyt P450 occurred after a 5-min incubation with 60 microM DM. The maximum in the difference spectra of microsomes was shifted to higher wavelength, showing the strong interaction of DM with Cyt P450. EROD and ECOD activities were inhibited by DM. The in vitro kinetic results on ECOD revealed that the inhibition was of non-competitive type, with K1 = 9.8 +/- 2.3 microM. This study indicates important biochemical effects of DM in fish liver, and suggests that exposure to DM may cause loss of the Cyt P450-dependent metabolism in fish.  相似文献   

7.
The dose-response relationships for induction of liver, lung, and skin ethoxyresorufin-O-deethylase (EROD) activity and liver acetanilide-4-hydroxylase (ACOH) activity following subchronic exposure to either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 1,2,3,7,8-pentachlorodibenzo-p-dioxin, 2,3,7,8-tetrabromodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran (TCDF), 1,2,3,7,8-pentachlorodibenzofuran (1-PeCDF), 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF), or octachlorodibenzofuran (OCDF) were determined in female B6C3F1 mice in order to estimate the relative enzyme inducing potency of these chemicals in three different tissues. The relative potencies were calculated based on tissue concentrations as well as administered dose. A dose-dependent induction of EROD activity in liver, lung, and skin and of ACOH activity in liver was found for all seven chemicals. When based on administered dose, the relative potencies for specific congeners did not vary substantially among tissues. The relative potencies for TCDF and 1-PeCDF, congeners which have much shorter half-lives than TCDD, increased for all enzymes when estimated from tissue concentrations. The relative potency of OCDF, which is poorly absorbed, was greater when estimated from tissue concentrations than when estimated from administered dose. 4-PeCDF is highly sequestered in hepatic tissue and when the relative potency was estimated based on tissue concentration, its potency for skin enzyme induction increased. These data indicate that the relative potency of these chemicals is influenced not only by the relative binding affinity to the Ah receptor, but also by differences in pharmacokinetic properties of these chemicals. In addition, it may be useful to derive two sets of toxic equivalency factor values, one used for estimating intake equivalents and the other for estimating tissue equivalents.  相似文献   

8.
Hepatic microsomal cytochrome P450, EROD and ECOD activity were investigated as biomarkers of PCB exposure in harbour seals (Phoca vitulina). Due to the difficulty of obtaining undegraded seal liver samples, standard spectrophotometric methodology was adapted to investigate P420 (degraded P450) as a PCB biomarker with partially degraded samples. Total PCB burdens in both blubber and liver had positive correlations with P450, P420 and MFO activity levels. The use of P420 biomarkers in this study supports the inclusion of samples from by-caught marine mammals for future biomonitoring studies. P450 isozymes CYP1A (P4501A) and CYP2B (P4502B) in conjunction with MFO activity were investigated as "specific" biomarkers of PCB exposure. They were found to reliably reflect levels of [MC] and [PB]-type PCB exposure in harbour seal liver.  相似文献   

9.
Possible antioxidative properties of three N-methyl-D-aspartate (NMDA)-receptor antagonists, the anesthetic ketamine and the antiparkinson drugs memantine and amantadine were investigated in vitro on the microsomal cytochrome P450 (P450) system of rat livers and on rat whole blood chemiluminescence in comparison to nicanartine, a substance with known antiatherosclerotic, hypolipemic and antioxidative capacity. For this purpose, the effects on NADPH- and iron-stimulated lipid peroxidation (LPO), hydrogen peroxide (H2O2) production, and NADPH- and iron-stimulated lucigenin (LC) and luminol (LM) amplified chemiluminescence (CL) were examined using rat liver microsomes. Additionally, the influence on LM amplified whole blood chemiluminescence after zymosan activation of polymorphonuclear leukocytes (WB-CL) was investigated. Furthermore, binding to P450 and effects on P450 mediated monooxygenase function, as measured by the model reactions ethoxyresorufin O-deethylation (EROD), ethoxycoumarin O-deethylation (ECOD), and ethylmorphine N-demethylation (END), were assessed. Nicanartine concentration dependently reduced LPO and H2O2 production already at a concentration of 1 microM, whereas LC and LM amplified CL and WB-CL were not affected. EROD and END were concentration dependently diminished starting at 1 microM, and ECOD already at 0.1 microM. Ketamine decreased LPO, H2O2 production and LM and LC amplified CL, starting at 100 microM. WB-CL was significantly diminished already at 10 microM. EROD and ECOD were inhibited at 10 and 100 microM and END at 100 microM. With memantine a concentration dependent inhibition of LPO and WB-CL was seen at 100 and 1000 microM and a reduction of LC and LM amplified CL only at 1000 microM. H2O2 production was not affected. EROD and ECOD were significantly diminished by a concentration of 100 microM. No effect was observed on END. Amantadine significantly reduced LPO and WB-CL, but only at 1000 microM. H2O2 production and LC and LM amplified CL were not affected. EROD was significantly diminished at 100 microM, whereas no influence was seen on ECOD and END. Nicanartine displayed type II or reverse type I, ketamine, memantine and amantadine type I substrate binding to P450. The highest binding affinity to P450 was seen with nicanartine, followed by ketamine, memantine and then amantadine. These results demonstrate, that all four substances seem to act as radical scavengers and/or as inhibitors of the oxidative function of P450. All four substances seem to interfere with the monooxygenase function of P450. This may result in a possible influence on the biotransformation of endogenous as well as of foreign compounds. The effects of nicanartine were much more pronounced than those of ketamine, memantine, and amantadine.  相似文献   

10.
1. The effect of the phenolic compounds protocatechuic acid, chlorogenic acid, tannic acid, gallates and silybin on ethoxyresorufin O-dealkylase (CYP1A1), methoxyresorufin O-dealkylase (CYP1A2) and pentoxy-O-dealkylase (CYP2B) was examined in mouse liver microsomes from induced animals. 2. All compounds tested could inhibit cytochrome P450-mediated enzyme activities, but to different extents. Tannic acid was the most potent inhibitor, especially toward EROD activity with an IC50=2.6 microM. Synthetic dodecyl gallate was also relatively selective toward this enzyme activity with an IC50=120 microM. 3. Protocatechuic acid, chlorogenic and silybin were more selective towards PROD and MROD activities. Their relative inhibitory potency for PROD activity was as follows: chlorogenic acid > protocatechuic acid > silybin > dodecyl gallate > propyl gallate. Protocatechuic acid was a more effective inhibitor of MROD activity than chlorogenic acid, and propyl gallate more effective than dodecyl gallate. Thus, no clear structure-activity or selectivity relationship was observed. 4. Analysis of the kinetics of inhibition revealed that the inhibition in most cases was non-competitive in nature.  相似文献   

11.
Infection of carp with Listeria monocytogenes 4b resulted in decreased liver, spleen, and head kidney enzyme activities, involved in the metabolism of xenobiotics. After infection, cytochrome P-450 levels and ethoxyresorufin O-deethylase (EROD) activity were decreased while conjugation enzymes remained unaffected. The maximum decrease for phase I enzymes occurred on d 3. This loss of monooxygenase levels and activity could not be directly correlated with an increase in the number of organisms, as consistently high bacterial counts were observed in all three organs during infection. The effect of L. monocytogenes infection was also measured in carp exposed to 3-methylcholanthrene (MCA). Cytochrome P-450 levels and EROD activity were significantly reduced, especially on d 3. A significant decreased activity of conjugation enzymes such as glutathione S-transferase (GST) and UDP-glucuronosyltransferase (UDPGT) was also observed for all days studied. Listeria infection inhibited MCA-induced increases in xenobiotic-metabolizing enzyme activities. These results indicate that infection may have deleterious effects on basal cytochrome P-450 monooxygenase levels. Furthermore, MCA treatment aggravates the insult to xenobiotic biotransformation enzymes by L. monocytogenes infection, by impairing a number of detoxification enzymes. These findings could result in significant changes in the susceptibility of fish to pollutants.  相似文献   

12.
The interaction of the organotin fungicide triphenyltin chloride (TPT) with fish microsomal monooxygenase systems has been studied in vitro and in vivo in the marine fish scup (Stenotomus chrysops). In vitro incubation of fish liver microsomes with TPT resulted in the conversion of about 40% of the native total spectral P450 to P420. In addition, a strong concentration-related inhibition of ethoxyresorufin O-deethylase (EROD) activity was observed, with a complete loss at 1.0 mM TPT. Pentoxyresorufin-O-dealkylase (PROD) activity was inhibited only at the highest concentration tested. This suggests either some specificity for the EROD catalyst CYP1A1, or a loss of reductant NADPH cytochrome c reductase as the cause. Further in vitro incubations showed that NADPH, but not NADH, cytochrome c reductase was strongly inhibited at 100 microM TPT and higher. To further investigate this effect, fish were injected with single doses of 5, 25 and 50 microM TPT (1.9, 9.6 and 19.3 mg kg-1 TPT), and 24 and 48 h later, hepatic microsomes were analyzed for total P450 content, EROD activity, NAD(P)H cytochrome c reductase, and the content of three CYP forms. EROD activity tended to be decreased in TPT-treated scup, with the response being stronger after 48 than 24 h. No significant conversion of spectrally determined P450 to cytochrome P420 was found, and cytochrome b5 was not affected. However, both NAD(P)H cytochrome c reductases were significantly inhibited at all concentrations. Immunoblot analysis showed reduction of CYP1A1 content at all doses, being significant at 25 mM after 48 h, but no decrease in CYP3A-like protein, the dominant catalyst of testosterone 6 beta-hydroxylation, nor CYP2B-like protein, the major contributor to indicates significant effects of TPT at high concentrations on fish hepatic CYP1A1 protein, EROD activity and the reductases. TPT seems to act more specifically on CYP1A1 than on other CYP forms. These findings combined with those of our previous studies (Brüschweiler BJ, Würgler FE, Fent K. Environ Toxicol Chem 1996;15:827-735; Fent K, Bucheli TD. Aquat Toxicol 1994;28:107-126; Fent K, Stegeman JJ. Aquat Toxicol 1991;20:159-168; Fent K, Stegeman JJ. Aquat Toxicol 1993;24:219-240) indicate a general degenerative effect of organotins on the fish microsomal monooxygenase system, although some differences are seen between the organotins, and between species. We conclude that these effects of organotins have consequences for use of CYP1A as a biomarker and endocrine disruption.  相似文献   

13.
1. Although stimulation of mouse RAW 264.7 macrophages by UTP elicits a rapid increase in intracellular free Ca2+ ([Ca2+]i), phosphoinositide (PI) turnover, and arachidonic acid (AA) release, the causal relationship between these signalling pathways is still unclear. In the present study, we investigated the involvement of phosphoinositide-dependent phospholipase C (PI-PLC) activation, Ca2+ increase and protein kinase activation in UTP-induced AA release. The effects of stimulating RAW 264.7 cells with thapsigargin, which cannot activate the inositol phosphate (IP) cascade, but results in the release of sequestered Ca2+ and an influx of extracellular Ca2+, was compared with the effects of UTP stimulation to elucidate the multiple regulatory pathways for cPLA2 activation. 2. In RAW 264.7 cells UTP (100 microM) and thapsigargin (1 microM) caused 2 and 1.2 fold increases, respectively, in [3H]-AA release. The release of [3H]-AA following treatment with UTP and thapsigargin were non-additive, totally abolished in the Ca2+-free buffer, BAPTA (30 microM)-containing buffer or in the presence of the cPLA2 inhibitor MAFP (50 microM), and inhibited by pretreatment of cells with pertussis toxin (100 ng ml(-1)) or 4-bromophenacyl bromide (100 microM). By contrast, aristolochic acid (an inhibitor of sPLA2) had no effect on UTP and thapsigargin responses. 3. U73122 (10 microM) and neomycin (3 mM), inhibitors of PI-PLC, inhibited UTP-induced IP formation (88% and 83% inhibition, respectively) and AA release (76% and 58%, respectively), accompanied by a decrease in the [Ca2+]i rise. 4. Wortmannin attenuated the IP response of UTP in a concentration-dependent manner (over the range 10 nM-3 microM), and reduced the UTP-induced AA release in parallel. RHC 80267 (30 microM), a specific diacylglycerol lipase inhibitor, had no effect on UTP-induced AA release. 5. Short-term treatment with PMA (1 microM) inhibited the UTP-stimulated accumulation of IP and increase in [Ca2+]i, but had no effect on the release of AA. In contrast, the AA release caused by thapsigargin was increased by PMA. 6. The role of PKC in UTP- and thapsigargin-mediated AA release was shown by the blockade of these effects by staurosporine (1 microM), Ro 31-8220 (10 microM), Go 6976 (1 microM) and the down-regulation of PKC. 7. Following treatment of cells with SK&F 96365 (30 microM), thapsigargin-, but not UTP-, induced Ca2+ influx, and the accompanying AA release, were down-regulated. 8. Neither PD 98059 (100 microM), MEK a inhibitor, nor genistein (100 microM), a tyrosine kinase inhibitor, had any effect on the AA responses induced by UTP and thapsigargin. 9. We conclude that UTP-induced cPLA2 activity depends on the activation of PI-PLC and the sustained elevation of intracellular Ca2+, which is essential for the activation of cPLA2 by UTP and thapsigargin. The [Ca2+]i-dependent AA release that follows treatment with both stimuli was potentiated by the activity of protein kinase C (PKC). A pertussis toxin-sensitive pathway downstream of the increase in [Ca2+]i was also shown to be involved in AA release.  相似文献   

14.
The metabolism and distribution of a single oral dose of 25 mumol 14C-labelled 3,3',4,4'-tetrachlorobiphenyl (14C-TCB) were investigated in pregnant female Wistar rats and their fetuses. TCB was administered on day 13 of gestation and the elimination was followed for 7 days. Non-pregnant rats were treated similarly for comparison. Fecal elimination of 14C-TCB derived radioactivity was significantly lower in pregnant rats than in non-pregnant rats. The major metabolite found in adult liver and plasma, placental tissue, whole fetuses and fetal plasma was 3,3',4',5-tetrachloro-4-biphenylol (4-OH-TCB). Tissue levels (liver, abdominal fat, skin, skeletal muscle, kidney and plasma) of 14C-TCB-derived radioactivity declined by 65-85% over a 7-day period following administration in the adult animals. However, 14C-TCB-derived radioactivity accumulated more than 100-fold in the fetuses over the same time period, and GC/MS analysis revealed that the fetal accumulation in radioactivity was due primarily to 4-OH-TCB, and not the parent compound. On day 20 of gestation, concentrations of 4-OH-TCB were 14 times greater in fetal plasma than maternal plasma. Treatment with 14C-TCB significantly reduced plasma thyroxine levels by at least 28% up to 7 days after administration in non-pregnant animals and up to 4 days after administration in pregnant rats (31% decrease). By 7 days after administration plasma thyroxine levels had returned to control levels in the TCB-treated pregnant rats. However, fetal plasma thyroxine levels were significantly decreased by 35% in fetuses from 14C-TCB-treated dams 7 days after TCB administration. Hepatic microsomal ethoxyresorufin-O-deethylase (EROD) activity was significantly induced in TCB-treated dams relative to controls at 4 and 7 days after administration, while no EROD activity was detected in hepatic microsomes from control or TCB treated fetal rats at day 20 of gestation. These data suggest that hydroxylated metabolites of polychlorinated biphenyls may play a role in the development toxicity of these compounds.  相似文献   

15.
Muscarinic receptor kinase activity previously described in intact CHO cells transfected with human m3-muscarinic receptor cDNA (CHO-m3 cells) [Tobin, A.B and Nahorski, S.R (1993) J. Biol. Chem. 268, 9817-9823] was found to be associated, at least in part, with a crude membrane fraction of CHO-m3 cell lysates. Phosphorylation of the m3-muscarinic receptor was agonist dependent, reaching a maximum after 10 min exposure to carbachol (1 mM) and was completely blocked by atropine (10 microM). m3-Muscarinic receptor phosphorylation was insensitive to Zn2+ (0.1 mM) and heparin (1 microgram/ml), concentrations that inhibit endogenous beta-adrenergic receptor kinase activity present in CHO-m3 cells strongly suggesting that the m3-muscarinic receptor kinase is distinct from beta-adrenergic receptor kinase. A role for protein kinase C can also be eliminated on the basis that the potent protein kinase C inhibitor, Ro-318220 (1 microM), had no effect on agonist-mediated m3-muscarinic receptor phosphorylation. Further, the inability of calcium (300 microM), cAMP (0.2 mM) and cGMP (0.2 mM) to elevate the basal phosphorylation state of m3-muscarinic receptors eliminates a role for protein kinases regulated by these second messengers. Finally, agonist mediated phosphorylation appears to be independent of G-protein activation as both GDP-beta-S (500 microM) and GTP-gamma-S (100 microM) did not influence m3-muscarinic receptor phosphorylation.  相似文献   

16.
Allylamine (AA, 3-aminopropene) is a specific cardiovascular toxin used experimentally to model myocardial necrosis and atherosclerosis. In these physiologic experiments, 10-day AA exposure (100 mg . kg-1 . day-1 by gavage) produced severe myocardial necrosis and increased heart rate but did not affect systolic blood pressure in rats. Mid-thoracic aortic ring segments were removed, and reactivity to contractile and relaxant agonists was tested. Aortic rings (approximately 3 mm) from AA-treated rats were contracted significantly more by high potassium (100 mM) and slightly more by norepinephrine (NE, 10 microM) than anatomically matched control aortic rings. No difference in aortic ring NE sensitivity or percentage relaxation in response to acetylcholine (1 microM) or sodium nitroprusside (100 microM) was detected between control and AA-treated rat aortic rings. Allylamine (1 microM-1 mM) induced modest, concentration-dependent contractions and tension oscillations in aortic rings from both control and AA-treated rats. Aortic rings from AA-treated rats, however, were more sensitive to AA. Vascular smooth muscle cells derived from control and AA-treated rat aortas had similar toxic sensitivity to AA in vitro using the MTT viability assay. The mechanisms by which AA exposure increased heart rate in vivo and contractility of aortic rings are unknown. These experiments support the previously proposed concept that AA-induced acute myocardial necrosis is due to coronary vasospasm and myocardial ischemia and cell injury.  相似文献   

17.
Alterations in the biochemical parameters of the catfish treated with low sublethal concentration (2.15 mg.L-1; 1/3 of 96 h LC50) of a carbamate pesticide-propoxur under static laboratory conditions for 10, 20 and 30 days were assayed. The fish elicited consistent hyperglycemia, concomitant with liver and muscle glycogenolysis, and hypoproteinemia in muscle and liver except 10 day post exposure to the pesticide, where hyperproteinemia was noticed in the liver. Throughout the exposure period the fish exhibited hyperphosphatemia. Hypocalcemia were recorded after 20 and 30 days, and serum magnesium level increased significantly only at 30 day exposure to the pesticide.  相似文献   

18.
We have examined the catalytic activity of glutathione S-transferases (GST) in the conjugation of busulfan with glutathione (GSH) in human liver cytosol, purified human liver GST, and cDNA-expressed GST-alpha 1-1. Human liver microsomes and cytosol were incubated with 40 microM busulfan and 1 mM GSH. Cytosol catalyzed the formation of the GSH-busulfan tetrahydrothiophenium ion (THT+) in a concentration-dependent manner, whereas microsomes lacked activity. The total and spontaneous rates of THT+ formation increased with pH (pH range, 6.50-7.75), with the maximum difference at pH 7.4. Due to the limited aqueous solubility of busulfan, a K(m) for busulfan was not determined. The intrinsic clearance (Vmax/K(m)) of busulfan conjugation was 0.167 microliter/min/mg with 50-1200 microM busulfan and 1 mM GSH. GSH Vmax and K(m) for busulfan conjugation were 30.6 pmol/min/mg and 312 microM, respectively. Ethacrynic acid (0.03-15 microM) inhibited cytosolic busulfan-conjugating activity with 40 microM busulfan and 1 mM GSH. Enzyme-mediated THT+ formation was decreased 97% by 15 microM ethacrynic acid with no effect on the spontaneous reaction. In incubations with affinity-purified liver GST and GST-alpha 1-1, the intrinsic clearance for busulfan conjugation was 0.87 and 2.92 microliters/min/mg, respectively. Busulfan is a GST substrate with a high K(m) relative to concentrations achieved clinically (1-8 microM).  相似文献   

19.
Succinate dehydrogenase activity was determined in the liver and heart of newborn rats after 3 and 48 hours' exposure to anoxic hypoxia (10% O2) and after 48 hours' starvation. Control determinations were made on newborn animals of corresponding ages, full term foetuses (21 days), infantile (1 and 2 weeks) and full grown animals. Hypoxia for 3 h had no influence on succinate dehydrogenase activity at all in either the heart or liver mitochondria of the newborn animals. After 48 h no difference was observed in the liver between the hypoxic animals and the starved controls of the same age, though starvation itself had resulted in a significant increase in activity, as much as 42%. When liver mitochondrial succinate dehydrogenase in normal mitochondria was activated by preincubation mitochondria with the substrate, the activity increase obtained was greater than that resulting from starvation. The increase in activity in the heart of the hypoxic or starved animals was not significant (less than 10%).  相似文献   

20.
Genes for the 290 amino acid, 33-34 kDa cytosolic acetyltransferases (NAT1* and NAT2*) from rat and hamster were cloned and expressed in Escherichia coli. Active clones were selected by a simple visual test for their ability to decolorize 4-aminoazobenzene in bacterial medium by acetylation. These recombinant acetyltransferases were analyzed for: (i) N-acetyltransferase, which was assayed by the rate of acetyl coenzyme A-dependent N-acetylation of 2-aminofluorene (2-AF) or 4-aminoazobenzene (AAB); (ii) arylhydroxamic acid acyltransferase, assayed by N,O-acyltransfer with N-hydroxy-N-acetyl-2-aminofluorene. Both NAT2s showed first order increases in N-acetylation rates with increasing 2-AF or AAB concentrations between 5 and 100 microM, with apparent K(m) values of 22-32 and 62-138 microM respectively. Although under the same conditions the N-acetylation rates for the two NAT1s declined by > 50%, below 5 microM 2-AF or AAB, the NAT rate data fit Michaelis-Menten kinetics, and the apparent K(m) values were 0.2-0.9 microM. For N,O-acyltransferase, the apparent K(m) values of the NAT1s were approximately 6 microM, while the K(m) values of the NAT2s were approximately 20- to 70-fold higher. SDS-PAGE/Western blot analysis of the recombinant acetyltransferases gave apparent relative molecular weights (MWr) of approximately 31 kDa for both NAT1s and rat NAT2 and approximately 29 kDa for hamster NAT2. Comparable MWr values were observed for native hamster liver NAT1 and NAT2 and for rat NAT1 under the same conditions. Although we did not detect NAT2-like activity in rat liver cytosol previously, the present data show that the rat NAT2* gene does code for a functional acetyltransferase, with properties similar to those of hamster liver NAT2. The data also indicate that at low substrate concentrations, NAT1 would apparently play the predominant role in vivo in N-acetylation and N,O-acyltransfer of aromatic amine derivatives, including their metabolic activation to DNA-reactive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号