首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental 1.5-V 64-Mb DRAM   总被引:1,自引:0,他引:1  
Low-voltage circuit technologies for higher-density dynamic RAMs (DRAMs) and their application to an experimental 64-Mb DRAM with a 1.5-V internal operating voltage are presented. A complementary current sensing scheme is proposed to reduce data transmission delay. A speed improvement of 20 ns was achieved when utilizing a 1.5-V power supply. An accurate and speed-enhanced half-VCC voltage generator with a current-mirror amplifier and tri-state buffer is proposed. With it, a response time reduction of about 1.5 decades was realized. A word-line driver with a charge-pump circuit was developed to achieve a high boost ratio. A ratio of about 1.8 was obtained from a power supply voltage as low as 1.0 V. A 1.28 μm2 crown-shaped stacked-capacitor (CROWN) cell was also made to ensure a sufficient storage charge and to minimize data-line interference noise. An experimental 1.5 V 64 Mb DRAM was designed and fabricated with these technologies and 0.3 μm electron-beam lithography. A typical access time of 70 ns was obtained, and a further reduction of 50 ns is expected based on simulation results. Thus, a high-speed performance, comparable to that of 16-Mb DRAMs, can be achieved with a typical power dissipation of 44 mW, one tenth that of 16-Mb DRAMs. This indicates that a low-voltage battery operation is a promising target for future DRAMs  相似文献   

2.
This paper describes a flexible test mode approach developed for a 256-Mb dynamic random access memory (DRAM). Test mode flexibility is achieved by breaking down complicated test mode control into more than one primitive test mode. The primitive test modes can be selected together through a WE CAS Before RAS (WCBR) cycle with a series of addresses for mode select. Although each primitive test mode may not complete a meaningful task alone, their combination performs many complex and powerful test modes. In this design, 64 primitive test modes are available. These can be combined to realize more than 19000 useful test modes. A new signal margin test mode is introduced which allows an accurate signal margin test even for small capacitance cells, which are difficult to identify in existing plate-bump method. A flexible multiwordline select test mode effectively performs a toggled wordline disturb test, a long tRAS wordline disturb test, and a transfer gate stress voltage test, without causing any unnatural array disturbance. Finally, test modes, which can directly control the timing of sense amplifiers and column select lines, are discussed  相似文献   

3.
256-Mb DRAM circuit technologies characterized by low power and high fabrication yield for file applications are described. The newly proposed and developed circuits are a self-reverse-biasing circuit for word drivers and decoders to suppress the subthreshold current to 3% of the conventional scheme, and a subarray-replacement redundancy technique that doubles chip yield and consequently reduces manufacturing costs. An experimental 256-Mb DRAM has been designed and fabricated by combining the proposed circuit techniques and a 0.25-μm phase-shift optical lithography, and its basic operations are verified. A 0.72-μm2 double-cylindrical recessed stacked-capacitor (RSTC) cell is used to ensure a storage capacitance of 25 fF/cell. A typical access time under a 2-V power supply voltage was 70 ns. With the proper device characteristics, the simulated performances of the 256-Mb DRAM operating with a 1.5-V power supply voltage are a data-retention current of 53 μA and an access time of 48 ns  相似文献   

4.
A 125 megabyte/s synchronous 32-bank 256-Mb DRAM has been developed by a bank-interleaving oriented multibank architecture including a shared-sense amplifier cache with an overlapped bank control for hidden precharge, phase-aligned timing pulse transmission, and voltage controlled negative conductance (VCNC) data-bus current sense amplifier  相似文献   

5.
A 256-Mb DRAM with a multidivided array structure has been developed and fabricated with 0.25-μm CMOS technology. It features 30-ns access time, 16-b I/Os, and a 35-mA operating current at a 60-ns cycle time. Three key circuit technologies were used in its design: a partial cell array activation scheme for reducing power-line voltage bounce and operating current, a selective pull-up data-line architecture to increase I/O width and reduce power dissipation, and a time-sharing refresh scheme to maintain the conventional refresh period without reducing operational margin. Memory cell size was 0.72 μm2. Use of the trench isolated cell transistor and the HSG cylindrical stacked capacitor cells helped reduce chip size to 333 mm2  相似文献   

6.
A 150-MHz graphics rendering processor with an integrated 256-Mb embedded DRAM, delivering a rendering rate of 75 M polygons/s, is presented, 287.5 M transistors are integrated on a 21.3×21.7 mm 2 die in a 0.18-μm embedded DRAM CMOS process with six layers of metal. Design methodologies for hierarchical electrical and physical design of this very large-scale IC, including power distribution, fully hierarchical timing design, and verification utilizing a newly developed nonlinear model, clock design, propagation delay, and crosstalk noise management in multi-millimeter RC transmission lines, are presented  相似文献   

7.
A 4-Mb cache dynamic random access memory (CDRAM), which integrates 16-kb SRAM as a cache memory and 4-Mb DRAM into a monolithic circuit, is described. This CDRAM has a 100-MHz operating cache, newly proposed fast copy-back (FCB) scheme that realizes a three times faster miss access time over with the conventional copy-back method, and maximized mapping flexibility. The process technology is a quad-polysilicon double-metal 0.7-μm CMOS process, which is the same as used in a conventional 4-Mb DRAM. The chip size of 82.9 mm2 is only a 7% increase over the conventional 4-Mb DRAM. The simulated system performance indicated better performance than a conventional cache system with eight times the cache capacity  相似文献   

8.
A 256-Mb DRAM with refresh-free-FIFO function for storage of moving pictures has been developed using 0.25-μm CMOS technology. An operating current of 73 mA (reduction of 52% compared with a conventional circuit) has been achieved at 100 MHz based on introducing (1) a suppressed High(H)-level differential data transfer scheme which ran be operated at 0.6 V, (2) a new pre-charge method which features a 1/2 VCC precharge level in read cycle and VSS pre-charge level in write cycle, and (3) a divided operation of array circuits for serial access  相似文献   

9.
A 256K DRAM with a 34.1 mm/SUP 2/ die size and a typical access time of 70 ns has been fabricated by using a newly designed boosted high-level clock generator circuit and triple poly-Si processing. For two-cell array configurations and sensing schemes, the available signal and uncommon mode noise levels at the input terminal of the sense amplifiers were studied. It was concluded that the open bit line configuration was the better one for a high-speed 256 kbit DRAM with a small die size, and the device characteristics obtained confirmed this approach. The device can operate in the nibble mode with a 15-ns access time from a CAS clock and can be refreshed with CAS before RAS automatic refresh mode. The yield has been enhanced with optimized redundancy.  相似文献   

10.
The authors present the characterization of the first dynamic RAM (DRAM) fabricated in a technology specifically optimized for cryogenic operation. With the power supply adjusted to assure hot-electron reliability, the 25-ns 4-Mb low-temperature (LT) chips operated 3 times faster than conventional chips. The LT-optimized chips functioned properly with cycle times as fast as 45 ns, and with a toggle-mode data rate of 667 Mb/s. Wide operating margins and a very large process window for data retention were demonstrated. At a temperature of 85 K the storage retention time of the trench-capacitor memory cells exceeded 8 h. This study shows that the performance leverage offered by low temperature applies equally well to DRAM and to logic. There is no limitation inherent to memory  相似文献   

11.
A 64-Mb dynamic RAM (DRAM) has been developed with a meshed power line (MPL) and a quasi-distributed sense-amplifier driver (qDSAD) scheme. It realizes high speed, tRAS=50 ns (typical) at Vcc=3.3 V, and 16-b input/output (I/O). This MPL+qDSAD scheme can reduce sensing delay caused by the metal layer resistance. Furthermore, to suppress crosstalk noise, a VSS shield peripheral layout scheme has been introduced, which also widens power line widths. This 64-Mb DRAM was fabricated with 0.4-μm CMOS technology using KrF excimer laser lithography. A newly developed memory cell structure, the tunnel-shaped stacked-capacitor cell (TSSC), was adapted to this 64-Mb DRAM  相似文献   

12.
A 64-Mb CMOS dynamic RAM (DRAM) measuring 176.4 mm2 has been fabricated using a 0.4-μm N-substrate triple-well CMOS, double-poly, double-polycide, double-metal process technology. The asymmetrical stacked-trench capacitor (AST) cells, 0.9 μm×1.7 μm each, are laid out in a PMOS centered interdigitated twisted bit-line (PCITBL) scheme that achieves both low noise and high packing density. Three circuit techniques were developed to meet high-speed requirements. Using the preboosted word-line drive-line technique, a bypassed sense-amplifier drive-line scheme, and a quasi-static data transfer technique, a typical RAS access time of 33 ns and a typical column address access time of 15 ns have been achieved  相似文献   

13.
An experimental 256-Mb dynamic random access memory using a NAND-structured cell (NAND DRAM) has been fabricated. The NAND-structured cell has four memory cells connected in series, which reduces the area of isolation between the adjacent cells and also reduces the bit-line contact area. The cell area per bit measures 0.962 μm2, using 0.4-μm CMOS technology, which is 63% in comparison with the conventional cell. In order to reduce the die size, time division multiplex sense-amplifier (TMS) architecture, in which a sense amplifier is shared by four bit lines, has been newly introduced. The chip area is 464 mm2, which is 68% compared with the DRAM using the current cell structure. The data can be accessed by a fast-block-access mode up to 512 bytes as well as a random access mode. Typical 112-ns access time of the first data in a block and 30-ns serial cycle time are achieved  相似文献   

14.
In order to achieve small self-refresh current (ICC/sub 6/), the first 256-Mb SDRAM with an on-chip thermometer in the DRAM industry is implemented with a new self-refresh scheme. In addition, the biased reference line (BRL) sensing scheme improving refresh characteristics is proposed to increase refresh period and reduce ICC/sub 6/. The on-chip thermometer is characterized by a small area of 0.43 mm/sup 2/, low power consumption with less than 1-/spl mu/A average current, and good accuracy of 5.85/spl deg/C in the worst case. Good accuracy is achieved by incorporating many generic design techniques, including offset-free operational amplifiers and the chopping method, and small area is achieved by applying DRAM cell technology to integrating analog-digital converter. A 75% reduction in ICC/sub 6/ at 60/spl deg/C is achieved with on-chip thermometer and BRL sensing scheme improving 30% of refresh characteristic.  相似文献   

15.
A 1-Mb BiCMOS DRAM having a 23-ns access time is described. The DRAM uses a direct sensing technique and a nonaddress-multiplexing configuration. This technique combines the NMOS differential circuit on each pair of data lines with a common highly sensitive bipolar circuit. The resulting chip has been verified to have high-speed characteristics while maintaining a wide operating margin and a relatively small chip size of 62.2 mm2, in spite of a 1.3-μm lithography level  相似文献   

16.
A 17-ns nonaddress-multiplexed 4-Mb dynamic RAM (DRAM) fabricated with a pure CMOS process is described. The speed limitations of the conventional DRAM sensing technique are discussed, and the advantages of using the direct bit-line sensing technique are explained. A direct bit-line sensing technique with a two-stage amplifier is described. One readout amplifier is composed of a two-stage current-mirror amplifier and a selected readout amplifier is activated by a column decoder output before the selected word line rises. The amplifier then detects a small bit-line signal appearing on a bit-line pair immediately after the word-line rise. This two-stage amplification scheme is essential to improving access time, especially in the case of a CMOS process. The high sensitivity of the readout amplifier is discussed, and the electrical features and characteristics of the fabricated DRAM are reported  相似文献   

17.
A cache DRAM which consists of a dynamic RAM (DRAM) as main memory and a static RAM (SRAM) as cache memory is proposed. An error checking and correcting (ECC) scheme utilizing the wide internal data bus is also proposed. It is constructed to be suitable for a four-way set associated cache scheme with more than a 90% hit rate estimated to be obtained. An experimental cache DRAM with 1-Mb DRAM and 8-kb SRAM has been fabricated using a 1.2-μm, triple-polysilicon, single-metal CMOS process. A SRAM access time of 12 ns and a DRAM access time of 80 ns, including an ECC time of 12 ns, have been obtained. Accordingly, an average access time of 20 ns is expected under the condition that the hit rate is 90%. The cache DRAM has a high-speed data mapping capability and high reliability suitable for low-end workstations and personal computers  相似文献   

18.
A high-speed 16-Mb DRAM with high reliability is reported. A multidivided column address decoding scheme and a fully embedded sense-amplifier driving scheme were used to meet the requirements for high speed. A low-power hybrid internal power supply voltage converter with an accelerated life-test function is also proposed and was demonstrated. A novel substrate engineering technology, a retrograded well structure formed by a megaelectronvolt ion-implantation process, provides a simple process sequence and high reliability in terms of soft error and latch-up immunity.<>  相似文献   

19.
A 29-ns (RAS access time), 64-Mb DRAM with hierarchical array architecture has been developed. For consistent high yields and high speed, a CMOS segment driver circuit is used as a hierarchical word line scheme. To achieve high speed, precharge signal (PC) drivers for equalizing the bit lines pairs, and shared sense amplifier signal (SHR) drivers are distributed in the array. To enhance sense amplifiers speed in low array voltage, an over driven sense amplifier is adopted. A hierarchical I/O scheme with semidirect sensing switch is introduced for high speed data transfer in the I/O paths. By combining these proposed circuit techniques and 0.25-μm CMOS process technologies with phase-shift optical lithography, an experimental 64-Mb DRAM has been designed and fabricated. The memory cell size is 0.71×1.20 μm 2, and the chip size is 15.91×9.06 mm2. A typical access time under 3.3 V power supply voltage is 29 ns  相似文献   

20.
Three developments are proposed for high-performance DRAMs: a bipolar complementary MOS (BiCMOS) DRAM device structure featuring high soft-error immunity due to a p/SUP +/ buried layer; a high-speed circuit configuration of eight NMOS subarrays combined with BiCMOS peripheral drivers and BiCMOS data output circuitry; and BiCMOS voltage and current limiters lowering power dissipation as well as peak current. A 1.3 /spl mu/m 1-Mb DRAM is designed and fabricated to verify the usefulness of these BiCMOS DRAM technologies. Features of this chip include a typical access time of 32 ns, a typical power dissipation of 450 mW at a 60-ns cycle time, and chip size of 5.0/spl times/14.9 mm/SUP 2/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号