首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, a simple WO3 dry lithiation is proposed for fabrication of all-solid-state electrochromic devices and characterized completely by X-ray photoelectron spectroscopy and electrochemical method. Lithiation is carried out by electron-beam evaporation of metal lithium, and the lithiated films have different components and electrochromic properties with different lithiation degrees. It is found that if Li/W ratio is less than 0.25, tungsten bronze LixW03 is formed and the lithiated by wet method. Finally, a lithium-based all-solid-state electrochromic device with proper lithiation degree is fabricated using this dry method.  相似文献   

2.
Optical indices have been determined for thin films of several electrochromic oxide materials. One of the most important materials in electrochromic devices, WO3, was thoroughly characterized for a range of electrochromic states by sequential injection of Li ions. Another promising material, Li0.5Ni0.5O, was also studied in detail. Less detailed results are presented for three other common lithium-intercalating electrochromic electrode materials: V2O5, LiCoO2, and CeO2–TiO2. The films were grown by sputtering, pulsed laser deposition (PLD) and sol–gel techniques. Measurements were made using a combination of variable-angle spectroscopic ellipsometry and spectroradiometry. The optical constants were then extracted using physical and spectral models appropriate to each material. Optical indices of the underlying transparent conductors, determined in separate studies, were fixed in the models of this work. The optical models frequently agree well with independent physical measurements of film structure, particularly surface roughness by atomic force microscopy. Inhomogeneity due to surface roughness, gradient composition, and phase separation are common in both the transparent conductors and electrochromics, resulting sometimes in particularly complex models for these materials. Complete sets of data are presented over the entire solar spectrum for a range of colored states. These data are suitable for prediction of additional optical properties such as oblique transmittance and design of complete electrochromic devices.  相似文献   

3.
The fact that conjugated polymers repeatedly undergo electrochemical doping/undoping processes, which are accompained by color changes, makes these materials very attractive, and much effort has been devoted to their use in advanced devices. There is renewed interest in electroactive polymers that reversibly undergo both p- and n-doping because of their potential application in symmetric electrochemical devices. We employed fused molecules, dithienothiophenes, as monomers to obtain polymers with a narrow band gap suitable for n- and p-doping. The performance results of two symmetric electrochromic devices having as electrodes both poly(dithieno[3,4-b:3',4'-d]thiophene) (pDTT1) and poly(dithieno[3,4-b:2',3'-d]thiophene) (pDTT3) are reported and discussed.  相似文献   

4.
New symmetrical electrochromic devices were constructed, with PEDOT acting as electrochromic layer or as counter electrode layer depending on the polarity of the applied voltage. Devices of around 500 mm2 were analysed in this work. They can switch from 0.5 to 2 V, obtaining a spectral change of around 21% mainly in the red wavelength interval. Measured electrochemical impedance was fitted to an equivalent circuit, made by a Randles circuit, with Warburg impedance simulating ionic diffusion at low frequencies. Results show problems in the contact layers, not seen in normal operation. This will serve as a method to improve the devices construction.  相似文献   

5.
Chromogenic device technology can be used to vary the throughput of visible light and solar energy for windows in buildings as well as for other see-through applications. The technologies can make use of a range of “chromic” materials - such as electrochromic, thermochromic, photochromic, etc - either by themselves or in combinations. The first part of this paper points at the great energy savings that can be achieved by use of chromogenic technologies applied in the built environment, and that these savings can be accomplished jointly with improved indoor comfort for the users of the building. Some recent data are presented on a foil-type electrochromic device incorporating tungsten oxide and nickel oxide. In particular, we consider the possibilities of controlling the near-infrared transmittance and optimize this property for specific climates. To that end we discuss Au-based transparent conductors for electrochromics as well as high-transmittance thermochromic multilayer films incorporating VO2 and TiO2.  相似文献   

6.
As electrochromic device (ECD) emerges into the market, the necessity of cost reduction via high-throughput manufacturing is unavoidable. Inorganic monolithic ECD has compatibility in its manufacturing steps, allows continuous processing and hence low-cost ECD. A roll-to-roll (R2R) production is the industrial standard for high-throughput processing and was chosen to synthesize ECD on polymeric substrates. Preliminary success by implementing methods compatible to the aforementioned R2R processing has been achieved; however, continuous test-runs on an R2R machine are still limited.  相似文献   

7.
6×8 cm2 electrochromic devices (ECDs) with the configuration K-glass/EC-layer/electrolyte/ion-storage (IS) layer/K-glass, have been assembled using Nb2O5:Mo EC layers, a (CeO2)0.81–TiO2 IS-layer and a new gelatin electrolyte containing Li+ ions. The structure of the electrolyte is X-ray amorphous. Its ionic conductivity passed by a maximum of 1.5×10−5 S/cm for a lithium concentration of 0.3 g/15 ml. The value increases with temperature and follows an Arrhenius law with an activation energy of 49.5 kJ/mol. All solid-state devices show a reversible gray coloration, a long-term stability of more than 25,000 switching cycles (±2.0 V/90 s), a transmission change at 550 nm between 60% (bleached state) and 40% (colored state) corresponding to a change of the optical density (ΔOD=0.15) with a coloration efficiency increasing from 10 cm2/C (initial cycle) to 23 cm2/C (25,000th cycle).  相似文献   

8.
Several issues regarding the working environment and the stability of prototype electrochromic (EC) windows are discussed. In this study, we focus on issues to attain confidence in the durability of EC devices for energy efficient architectural glazing. The environmental conditions that EC glazing are subjected to, are detailed and discussed. Comparisons are made to actual prototype, real time EC window exposure testing. Testing of EC mirrors and liquid crystal glazing is compared to EC glazing. During testing of glazing in Arizona, surface temperatures of 56–65°C (uncolored-colored) were measured on EC glazing panels, with ambient air temperature of 40°C. The usual panel heating rate ranged from 14.3°C/h to 21°C/h. The steepest swing occurred during a thunderstorm with a 40°C rise in 15 min. In EC testing studies in Yokohama, it was determined that indoor testing and outdoor testing did not achieve the same results, with outdoor testing being more severe. It was also determined that the critical test parameters were temperature, solar intensity (especially UV), depth of coloration, charge capacity and change in transmittance. As a result of this study, we recommend a regimen of testing covering thermal cycling, UV stability, thermal storage and thermal shock.  相似文献   

9.
By virtue of gemini surfactant template, nanostructured tungsten oxides thin films were prepared from the modified tungsten hexachloride sol-gel techniques. Temperature was varied as it is an important factor for crystallization, surface morphology and microstructure of tungsten oxides, from the studies of X-ray diffractions, scanning electron microscopy and transmission electron microscopy. The mesoporous sample calcined at 300 °C has tri-dimensional vermicular mesopores with nanocrystallites embedded in the pore wall, while such uniform structure would be destroyed by higher calcination temperature of about 400 °C. X-ray photoelectron spectroscopy was used for analyzing the surface-binding states and the stoichiometry for the oxides. Electrochromic characterization was implemented by simultaneous voltametric and spectrophotometric measurements of tungsten oxides/indium tin oxide (ITO) electrodes. The investigation results showed that organized pore-wall nanostructure has strong effects on the electrochemical and chromogenic properties depending on the specific surface area and the impacts from the evolved crystallization.  相似文献   

10.
The influence of the intercalate species on the quasi-static electrochromic behavior of tungsten-oxide-based devices is investigated. Two different electrolytes are used in the devices: an aqueous sulfuric acid solution, from which it is assumed that intercalation of hydrogen occurs; and a solution of lithium perchlorate in propylene carbonate, from which it is assumed that intercalation of lithium occurs. Experiments are performed in which a step-current of small magnitude is imposed through the device, and the corresponding time-dependence of the electrical potential and optical transmission are measured simultaneously. The behavior of the optical efficiency is relatively insensitive to the nature of the intercalate species, but the device potential is appreciably more sensitive to lithium intercalation than to hydrogen intercalation. The disparity in electrical behavior is likely due to increased strain effects and/or a diminished availability of sites associated with the larger lithium intercalate. It is shown that the electrical and optical behavior of the two types of devices may be related by a single linear scaling relation, indicating that the fundamental processes involved in the operation of the devices are similar.  相似文献   

11.
Poly(ethyl methacrylate) (PEMA)- and poly(2-ethoxyethyl methacrylate) (PEOEMA)-based polymer gel electrolytes with entrapped solutions of lithium perchlorate in propylene carbonate (PC) were prepared by direct, UV-initiated polymerization. The electrolytes were studied using electrochemical methods and they exhibit good ionic conductivity (up to 0.7 mS cm−1 at 20 °C) as well as electrochemical stability up to 2.5 V vs. Cd/Cd2+ (5.1 V vs. Li/Li+) on gold electrode. The electrolytes have thermal stability up to 125 °C. The electrolytes were successfully tested as ionic conductors in the electrochromic device FTO/WO3/Li+-electrolyte/V2O5/FTO using coupled optoelectrochemical methods to discuss the relationship between the electrolyte composition and parameters such as change of transmittance, response time and stability. The transmittance change Δτ was found to be 30-45% at 634 nm.  相似文献   

12.
An all-solid-state electrochromic (EC) device based on NiO/WO3 complementary structure and solid polyelectrolyte was manufactured for modulating the optical transmittance. The device consists of WO3 film as the main electrochromic layer, single-phase hybrid polyelectrolyte as the Li+ ion conductor layer, and NiO film as the counter electrochromic layer. Indium tin oxide- (ITO) coated glass was used as substrate and ITO films act as the transparent conductive electrodes. The effective area of the device is 5×5 cm2. The device showed an optical modulation of 55% at 550 nm and achieved a coloration efficiency of 87 cm2 C−1. The response time of the device is found to be about 10 s for coloring step and 20 s for bleaching step. The electrochromic mechanism in the NiO/WO3 complementary structure with Li+ ion insertion and extraction was investigated by means of cyclic voltammograms (CV) and X-ray photoelectron spectroscopy (XPS).  相似文献   

13.
Advanced materials for IR applications such as thermal control in spacecraft applications or variable optical attenuators which could replace the present systems have been sought. The use of electrochromic devices based on conducting polymers will add lightness and flexibility to the final device in order to overcome the limitations of the present materials used in IR applications. In this work, we present a new all-plastic electrochromic device with optical contrast (%ΔT) of 44% at 1971 nm in the IR region based on PEDOT formulations and ionic liquid blends as electrolytes. The switching time of the device is in the order of a few seconds, with a tc 2.7 s and tb 3.8 s.  相似文献   

14.
Tandem dye-sensitized solar cell (DSSC)-electrochromic (EC) devices were realized using two-faced transparent conducting oxide (TCO). To supply sufficient voltage to drive the EC devices, two series connected, semitransparent DSSCs were fabricated with 7 nm-thick, dye-adsorbed TiO2 and 4 nm-thick Pt layers. The two series connected, semitransparent DSSCs that were used had an open circuit voltage and short circuit current density of about 1.35 V and 3.96 mA cm−2, respectively, at 1-sun. The tandem DSSC-EC devices showed an optical density difference of 1.2 at 750 nm and reasonable response times of about 60 and 45 s during the coloring and bleaching processes, respectively, indicating that the two series-connected, semitransparent DSSCs could be used as the power sources in the tandem photovoltaic-powered EC devices.  相似文献   

15.
The isothermal transient ionic current (ITIC) in three different kinds of laminated electrochromic devices has been determined. The devices consisted of one 300 nm thick layer of nickel oxide and one 300 nm thick layer of WO3 deposited onto separate In2O3:Sn (ITO) covered glass substrates by DC magnetron sputtering at room temperature. They were then laminated with a polymeric ion conductor, acting as electrolyte, in symmetric and asymmetric configurations, i.e. WO3/WO3, NiOxVyHz/NiOxVyHz and WO3/NiOxHy. The electrolyte was prepared by mixing polyethylene glycol of average molecular weight 400 (PEG 400) and lithium triflouromethanesulfonate (LiSO3CF3) for 12 h at 70°C and with a ratio oxygen/lithium (O/Li)=10. The samples were first polarized, i.e. the ions are transported to one of the electrodes, which in the asymmetric devices is the nickel oxide electrode. At the first applied potential step, the ions move through the electrolyte towards the opposite electrode. The potential is then switched and the ions move back to the first electrode. The ITIC curves are found to depend on the electrode material and in the asymmetric case also the direction of the ion current.  相似文献   

16.
We present a new approach for design of organic electrochromic devices (ECD) with inter-digitated electrode (IDE) structure and three-electrode dynamic operation. The advantages of the IDE design include the ability to produce fast and homogenous color change over large areas. In addition, it enables fabrication of multi-color devices. Our method involves photolithographic etching of ITO followed by electrophoretic deposition (EPD) and mechanical compression of porous titania to produce finely patterned electrodes with high surface area. The titania layer is chemically modified by new stable and reversible electrochromic viologen derivatives involving phenylphosphonic acid anchoring moiety. The new device demonstrates reversible and strong color change from colorless to deep blue and yellow.  相似文献   

17.
Electrochemical synthesis of tungsten oxide (WO3) thin film nanostructures by potentiostatically controlling the surface aggregates formed at the electrode–electrolyte interface, in the presence of a polymeric template (polyethylene glycol 400, PEG) from a plating sol of peroxotungstic acid (PTA) is presented. The nanoparticulate morphology of the WO3 film changes drastically upon varying PEG content in the precursor sol; from an amorphous structure with randomly distributed pores for a film derived from a PTA sol with PEG:ethanol in a 3:7 volume ratio, to a mesoporous, nanocrystalline material with hybrid structures encompassing spherical grains and nanorod-like shapes with a triclinic modification for a film formed in a sol with PEG:ethanol in a 1:1 volume ratio. This approach highlights the role of the PEG proportion in controlling crystal growth, assembly patterns and pore structure. The film derived from the sol with PEG:ethanol in a 1:1 volume ratio exhibits superior transmission modulation and coloration efficiency as compared to the film obtained from a sol with PEG:ethanol in a 3:7 volume ratio. While the latter film deteriorates rapidly within 35 color-bleach cycles, the former film sustains more than 3500 cycles, without significant degradation. This film also exhibits fast switching between the clear and blue states; these are repercussions of the mesopore structure and the interconnected nanocrystallite phase.  相似文献   

18.
Fundamental properties of all-solid-state electrochromic windows to control the solar energy have been investigated. This system comprises of multilayer represented as Glass/ITO/NiO/Inorganic Electrolyte (Ta2O5, etc.)/ WO3/ITO/ Adhesive Film/ Glass. Of the various electrochromic systems examined so far, the most important features are their environmental stability and the possibility of large area applications. Our system can control the visible transmittance between 72.6% and 17.6% and has a cyclic life over 100000 cycles at 60°C. Based on the accelerated weathering tests, the stability of the system is estimated to be over five years for outdoor applications. For the problem of scaling up, some technical aspect is given and the prototype window of size 40×60 cm is exemplified. The present system could be more suitable for architectural and automobile applications in the near future by developing production technology.  相似文献   

19.
Nickel oxide (NiOx) thin films were prepared by the chemical deposition method (solution growth) on two kinds of substrates: (1) glass and (2) glass/SnO2 : F. Films were thermally treated at 200°C for 10 min in atmosphere. The texture, microstructure and composition were examined by optical microscopy, X-ray diffraction patterns (XRD) and X-ray photoelectron spectroscopy (XPS) analysis of the surface layer. The films exhibited anode electrochromism. The optical properties of the bleached and colored state were examined with transmittance spectroscopy in the visible region and reflectance FTIR spectroscopy. An electrochromic test device (ECTD), consisting of SnO2/NiOx/NaOH–H2O/SnO2, was assembled and tested by cyclic voltammetry combined with a simultaneous recording of the change of transparency at λ=670 nm. The coloration efficiency was evaluated to be 24.3 cm2/C. The spontaneous ex-situ change of coloration with time of the colored and bleached NiOx/SnO2/glass was also examined.  相似文献   

20.
In this work, room temperature ionic liquid (RTIL)—1-butyl-3-methyl-imidazolium hexafluorophosphate ([BMIM]PF6)—was employed to fabricate dual polymer electrochromic devices (DPECDs). [BMIM]PF6 was used as the electrolyte both in the electrochemical synthesis of conducting polymers (CPs) and in the fabrication of DPECDs. The electrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3-methylthiophene) (PMeT) were employed to serve as two complementary coloring electrochromic thin films. Through combining these two electrochromic layers, the assembled DPECDs were found to switch between deep red and deep blue, which are two primary colors for a display. By employing RTIL as electrolyte, the devices retained 65% of their optical contrast and electroactivity after 5×103 deep double potential steps, showing enhanced stability and durability. The DPECDs also exhibited stable electrochromic performance, with a maximum optical contrast of 26% at 665 nm, and achieved a high coloring efficiency of 460 cm2 C-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号