首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growing number of electric drives with non-sinusoidal line currents has given increased interest in active power filters (APF), to avoid grid problems caused by harmonic distortions. In this paper, a novel direct current-space-vector control scheme (DCSVC) is presented for a three-level, neutral-point-clamped voltage source inverter, which is employed as an active power filter. The proposed method generates the compensation current reference indirectly generating an equivalent ohmic conductance for the fundamental component by means of the APF's dc-link voltage control. Based on the fast Fourier transform the compensation of the reactive fundamental current and selectable harmonics can be cancelled, confining the operation to only harmonic compensation and thus saving the APF's apparent power. The novel DCSVC, operating in synchronously rotating coordinates is implemented in a field programmable gate array, realizing the switching states from switching tables. The proposed control reduces the average switching frequency and thus, the switching power loss significantly, compared with a previous DCSVC, operating in stationary coordinates. Simulation and experimental results validate the feasibility and highly dynamic performance of the proposed control, both for harmonic and total non-active current compensation.   相似文献   

2.
A capacitor-clamped voltage-source inverter for active power filter operation under balanced and unbalanced conditions is proposed to suppress current harmonics and compensate the reactive power generated from the nonlinear loads. The adopted voltage-source inverter is based on a three-level capacitor-clamped topology to reduce the voltage stress of power semiconductors. Two control loops are used in the control scheme to achieve harmonic and reactive currents compensation and to regulate the inverter dc side voltage. In the adopted inverter, the neutral point voltage is compensated by a voltage compensator to obtain the balanced capacitor voltages on the dc side. In order to control the flying capacitor voltages, two redundant states in each inverter leg can be selected to compensate the flying capacitor to obtain a better voltage waveform with low harmonic contents on the ac terminals. The balanced and sinusoidal line currents are drawn from the ac source under the balanced and unbalanced conditions. The feasibility of the proposed scheme is confirmed through experimental results  相似文献   

3.
In this article, the PWM inverter works as a controlled fundamental current source in the single phase series hybrid active power filter (APF) based on fundamental magnetic flux compensation (FMFC). The series transformer can exhibit the self-impedance of primary winding to harmonic current, which forces harmonic current to flow into passive power filter. With the influence of harmonic current, the voltage of primary winding of transformer is a harmonic voltage, which makes the inverter output currents have a certain harmonic component, and it degrades the filtering characteristics. On the basis of PWM inverter, the mathematical model of series hybrid APF is established, and the filtering characteristics of single phase APF are analysed in detail. Three methods are gained to improve filtering characteristics: reasonably designing the inverter output filter inductance, increasing series transformer ratio and adopting voltage feed-forward control. Experimental results show that the proposed APF has greater validity.  相似文献   

4.
Current distortion of 12-pulse rectifier loads is significantly lower compared to six-pulse rectifier loads. However, in passive filtering of the lowest and dominant characteristic 11th and 13th harmonics, the use of 5th and 7th filters is often required in order to prevent possible parallel and series resonance between the passive filter and source impedance which can be excited by source background distortion or by load current residual noncharacteristic harmonics at the 5th and 7th harmonic frequencies. In hybrid filter systems, an active filter (AF) can be added in series with the passive filter in order to isolate the source and load. In most proposed hybrid filter systems, AF control is based on the detection of total current distortion and high-frequency inverters. With a selective AF control system and voltage-controlled inverter, the AF can be controlled to isolate the load at the critical frequencies only while at all other frequencies the passive filter function is preserved so that lower switching frequency and AF rating is required. In this paper, the authors present a selective AF filter control system and simple hybrid filter topology suitable for the compensation of high-power 12-pulse rectifier loads. Harmonic current controllers based on the second-order infinite-impulse response digital resonant filters are used, as they can be considered as simple digital algorithms for more complex double cascaded synchronous-reference-frame-based proportional plus integral controllers. They are centered to the targeted harmonic frequencies by using an adaptive fundamental frequency tracking filter. This approach gives good results, even if the reference waveform (in our case, a load voltage) is highly distorted or unbalanced and no separate phaselocked loop is required. Test results for a laboratory model of this system and stability analysis are presented and the importance of delay-time compensation is discussed  相似文献   

5.
This paper presents a direct current-space-vector control of an active power filter (APF) based on a three-level neutral-point-clamped (NPC) voltage-source inverter. The proposed method indirectly generates the compensation current reference by using an equivalent conductance of the fundamental component using APF's dc-link voltage control. The proposed control can selectively choose harmonic current components by real-time fast Fourier transform to generate the compensation current. The compensation current is represented in a rotating coordinate system with chosen switching states from a switching table implemented in a field-programmable gate array. In addition, a three-phase four-wire APF based on a three-level neutral-point-clamped inverter is also presented. The proposed APF eliminates harmonics in all three phases as well as the neutral current. A three-phase three-wire NPC inverter system can be used as a three-phase four-wire system since the split dc capacitors provide a neutral connection. To regulate and balance the split dc-capacitor voltages, a new control method using a sign cubical hysteresis controller is proposed. The characteristics of the APF system with an LCL-ripple filter are investigated and compared with traditional current control strategies to evaluate the inherent advantages. The simulation and experimental results validated the feasibility of the proposed APF.   相似文献   

6.
In this paper, an efficient and reliable neural active power filter (APF) to estimate and compensate for harmonic distortions from an AC line is proposed. The proposed filter is completely based on Adaline neural networks which are organized in different independent blocks. We introduce a neural method based on Adalines for the online extraction of the voltage components to recover a balanced and equilibrated voltage system, and three different methods for harmonic filtering. These three methods efficiently separate the fundamental harmonic from the distortion harmonics of the measured currents. According to either the Instantaneous Power Theory or to the Fourier series analysis of the currents, each of these methods are based on a specific decomposition. The original decomposition of the currents or of the powers then allows defining the architecture and the inputs of Adaline neural networks. Different learning schemes are then used to control the inverter to inject elaborated reference currents in the power system. Results obtained by simulation and their real-time validation in experiments are presented to compare the compensation methods. By their learning capabilities, artificial neural networks are able to take into account time-varying parameters, and thus appreciably improve the performance of traditional compensating methods. The effectiveness of the algorithms is demonstrated in their application to harmonics compensation in power systems  相似文献   

7.
In this article, the principle of a novel shunt hybrid active power filter (APF) based on magnetic flux compensation is proposed. The parallel transformer can exhibit nearly zero impedance to harmonic current whereas the zero magnetic flux condition is satisfied for harmonics, which leads harmonic current to flow into the transformer branch. Meanwhile, the transformer can exhibit continuously adjustable impedance to the fundamental current based on fundamental magnetic flux compensation, which works together with the passive power filter to compensate for reactive power. A mathematical model is established for system stability analysis and steady state estimation. The experimental results verify that the performance of the proposed APF is satisfactory in harmonic suppression as well as reactive power compensation.  相似文献   

8.
A new active common-mode EMI filter for PWM inverter   总被引:5,自引:0,他引:5  
This paper presents a new active common-mode electromagnetic interference (EMI) filter for the pulse-width modulation (PWM) inverter application. The proposed filter is based on the current sensing and compensation circuit and it utilizes a fast transistor amplifier for the current compensation. The amplifier utilizes an isolated low-voltage DC power supply for its biasing and it is possible to construct the active filter independent of the source voltage of the equipment. Thus the proposed active filter can be used in any application regardless of its working voltage. The effectiveness of the proposed circuit has been verified by experimental results.  相似文献   

9.
This paper deals with an implementation of a new control algorithm for a three-phase shunt active filter to regulate load terminal voltage, eliminate harmonics, correct supply power-factor, and balance the nonlinear unbalanced loads. A three-phase insulated gate bipolar transistor (IGBT) based current controlled voltage source inverter (CC-VSI) with a DC bus capacitor is used as an active filter (AF). The control algorithm of the AF uses two closed loop PI controllers. The DC bus voltage of the AF and three-phase supply voltages are used as feedback signals in the PI controllers. The control algorithm of the AF provides three-phase reference supply currents. A carrier wave pulse width modulation (PWM) current controller is employed over the reference and sensed supply currents to generate gating pulses of IGBTs of the AF. Test results are presented and discussed to demonstrate the voltage regulation, harmonic elimination, power-factor correction and load balancing capabilities of the AF system  相似文献   

10.
Active power filters (APFs) have been used to compensate harmonics, reactive current, and negative sequence fundamental frequency current drawn by nonlinear loads. The control of APF is the core issue for their proper operation. The flexibility of selective compensation embedded in the control scheme makes APF versatile for compensation of reactive power, harmonic currents, and unbalance in source currents and their combinations, depending upon the limited rating of voltage source inverter employed as APF. The proposed scheme utilizes neural network-based decomposition of the load current into positive and negative sequence fundamental frequency component, reactive component and harmonic components. The adaline-based current decomposer estimates the reference currents through tracking of unit vectors together with tuning of the weights. The implementation of the control scheme facilitates selective compensation which respects the limited rating of the APF. The simulated results using developed MATLAB model are presented and are validated by experimental results to depict the effectiveness of the proposed control method of APF  相似文献   

11.
In this paper, a current control scheme, based on proportional-integral regulators using sinusoidal signal integrators (SSIs), is proposed for shunt type power conditioners. The aim is to simplify the implementation of SSI-based current harmonic compensation for industrial implementations where strict limitations on the harmonic distortion of the mains' currents are required. To compensate current harmonics, the SSIs are implemented to operate both on positive and negative sequence signals. One regulator, for the fundamental current component, is implemented in the stationary reference frame. The other regulators, for the current harmonics, are all implemented in a synchronous reference frame rotating at the fundamental frequency. This allows the simultaneous compensation of two current harmonics with just one regulator, yielding a significant reduction of the computational effort compared with other current control methods employing sinusoidal signal integrators implemented in stationary reference frame. A simple and robust voltage filter is also proposed by the authors to obtain a smooth and accurate position estimation of the voltage vector at the point of common coupling (PCC) under distorted mains' voltages. The whole control algorithm has been implemented on a 16-b, fixed-point digital signal processor (DSP) platform controlling a 20-kVA power conditioner prototype. The experimental results presented in this paper for inductive and capacitive loads show the validity of the proposed solutions.  相似文献   

12.
An injection method for an active filter which eliminates the harmonics present in AC lines by injecting PWM harmonic compensating current is proposed. In the proposed method, the active filter produces a pulsewidth modulation (PWM) current that cancels the existing harmonics up to any order completely. To generate such PWM current, both inverter and DC current source is needed. The current source can be replaced by a large inductor without any external power source. This can be achieved by providing the inverter with rectifying capability because the inverter has the same circuit structure as the rectifier. Therefore, the proposed model of PWM injection current includes not only the harmonic components to suppress the existing harmonics up to any order, but also the fundamental one, to raise the inductor current to any desired value. The characteristics of the injection method are investigated through a digital computer simulation. Feasibility is proved by the experimental results  相似文献   

13.
A technique for parallel connection of transistors by using current-sharing reactors for the pulse-width-modulated (PWM) transistor inverter is reported. The technique not only increases current capacity, but also decreases the output harmonic contents. The output voltage waveforms of the proposed inverter have certain voltage levels during their half cycles, and thus it is anticipated that it will be difficult to analyze the output harmonics. For such waveforms, a frequency analysis approach is described, and its results are verified by experiments  相似文献   

14.
This paper deals with a single-phase distributed generation (DG) system with active power filtering (APF) capability, devised for utility current harmonic compensation. The idea is to integrate the DG unit functions with shunt APF capabilities, because the DG is connected in parallel to the grid. With the proposed approach, control of the DG unit is performed by injecting into the grid a current with the same phase and frequency of the grid voltage and with an amplitude depending on the power available from renewable sources. On the other hand, load harmonic current compensation is performed by injecting into the alternating current system harmonic currents like those of the load but with an opposite phase, thus keeping the line current almost sinusoidal. Both detection of the grid voltage fundamental and computation of the load harmonic compensation current have been performed by two neural adaptive filters with the same structure, one in a configuration ldquonotchrdquo and the other in the complementary configuration ldquoband.rdquo The ldquonotchrdquo filter has been used to compute the compensation current by eliminating only the contribution of the fundamental of the load current, whereas the ldquobandrdquo configuration is able to extract the fundamental of the coupling point voltage. Furthermore, because the active power generation and the APF features require current control of components at different frequencies, respectively, a multiresonant current controller has been adopted. The methodology has been tested successfully both in numerical simulation and experimentally on a suitably devised test setup. The stability analysis of the proposed control approach has been performed in the discrete domain.  相似文献   

15.
A new single-phase active power filter for reactive power compensation and harmonic suppression is proposed. Besides the general performance of other active power filters, it also has the feature that it can maintain the mains current as a sine-wave and correct the displacement power factor close to unity even when the mains voltage is distorted. A prototype of this active power filter is developed and tested under rectifier load to verify its performance. The test results show that the proposed scheme can compensate the reactive power and suppress harmonics of the nonlinear load effectively.  相似文献   

16.
A new hybrid power filter is presented for three phase industrial power systems which include passive power factor correction equipment (PFC). The hybrid filter damps resonances occurring between line impedances and the PFC. In addition, the hybrid filter topology can be used to compensate harmonic currents. The capacitors of the PFC, which generally cause resonant problems in harmonic distorted networks, can be used for passive filtering by connecting a transformer with a low magnetizing inductance in series hence creating a single harmonic trap. The primary side of the transformer is connected to a low VA-rated three-phase current controlled inverter which builds the active part of the hybrid topology. Simulation results and experimental results are presented verifying the damping and harmonic compensation performance of the proposed topology  相似文献   

17.
In this paper, modelling and hardware implementation of three-phase interleaved inverter-based shunt active power filter (SAPF) is proposed to mitigate current harmonics, reactive power for ensuring unity power factor and load balancing without shoot-through effect. Shoot-through effect is one of the hazardous issues in conventional voltage source inverters such as damage of power electronic switches, electromagnetic interference, ringing in the power circuitry. The present power system has inevitable non-linear loads which create large variations in the supply voltage distortions. Therefore, the compensation capability and efficiency of the SAPFs degrades. A novel predictive tuned filter is proposed in this paper to estimate the variations in the amplitude of supply voltage, frequency and harmonics for extracting the fundamental voltage signal. The fundamental extracted signal is further processed for reference current generation using generalized p-q theory. The performance of the proposed system is simulated using MATLAB®/Simulink environment and tested under different supply voltage conditions. The simulation results have been validated by developing a prototype in the laboratory by using a dSPACE1104 controller. It is found from the simulated and experimental results that the proposed system is fast, robust and accurate which improves the power quality without shoot-through problem.  相似文献   

18.
为满足高压大容量逆变系统的要求,设计采用绝缘栅双极晶体管IGBT组成逆变电路的光伏发电系统。通过对太阳能光伏发电原理的简单了解,比较场效应管MOSFET和绝缘栅双极晶体管IGBT构成的逆变电路,针对IGBT构成的逆变电路中的重要环节分别提出改进方案来优化电路设计。最终既满足对高压大容量系统要求,又可以提高整个系统工作效率,使得整个系统达到最优状态。  相似文献   

19.
IGBT SPICE model     
During the last few years, great progress in the development of new power semiconductor devices has been made. The new generation of power semiconductors is capable of conducting more current and blocking higher voltage. The IGBT (insulated gate bipolar transistor) is an outgrowth of power MOSFET technology. More like a MOSFET than a bipolar transistor in structure, the IGBT has some of the electrical characteristics of both. Like a MOSFET, the gate of the IGBT is isolated, and drive power is very low. The on-state conduction voltage of an IGBT is similar to that of a bipolar transistor. However, SPICE users are constantly faced with the inability to analyze circuits that contain devices that are not in the SPICE library of the semiconductor models. With the authors' own computer program, a complete macromodel of the IGBT for the SPICE simulator has been computed. In this paper, a complete IGBT SPICE macromodel is described and verified with experimental results  相似文献   

20.
A new fault current-sensing scheme employing the floating p-well for fast protection of the insulated gate bipolar transistor (IGBT) from the short-circuit faults is proposed and verified by employing 2D mixed mode simulation, based on the previous experimental results. The proposed floating p-well current-sensing scheme detects not the normal operating current but the fault current of the main IGBT by using the diode connected MOSFET and a resistor, when the short-circuit fault occurs. The diode-connected MOSFET eliminates the degradation of the forward voltage drop, because the floating p-well current does not flow under the normal operating condition due to the threshold voltage of the diode connected MOSFET. The proposed current sensor increases the protection speed without any additional delay time by the external blanking filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号