共查询到20条相似文献,搜索用时 15 毫秒
1.
以8-羟基喹啉-邻菲罗啉-La(Ⅲ)稀土配合物[La(Ⅲ)(Phen)(Oxine)]为中性载体的PVC膜电极对水杨酸根具有良好的电位响应性能和选择性,其选择性次序为Sal->ClO4->SCN->I->Br->NO2->SO32->Cl->SO42-.在pH4.0的磷酸盐缓冲体系中,电极电位呈现近能斯特响应,线性响应范围为1.0×10-5~1.0×10-1 mol/L,斜率为-58.5 mV/dec(20℃),检测下限为9.8×10-6 mol/L.采用交流阻抗技术研究了电极的响应机理,结果表明,配合物中心金属原子的结构以及载体本身的结构与电极的响应行为之间有非常密切的构效关系.电极可用于药品分析. 相似文献
2.
基于不对称双Schiff碱异三核配合物为中性载体的水杨酸根离子选择性电极的研究 总被引:2,自引:1,他引:1
研制了以不对称双Schiff碱异三核配合物为中性载体的PVC膜电极.对Sal-具有近Nernst电位响应,并呈现出反Hofmeister选择性行为.在pH5.0的磷酸盐缓冲体系中其线性响应范围为8.9x10-6~1.0x10-1mol/L.斜率为55.7 mV/dec.检测下限为6.1x10-6mol/L.采用交流阻抗技术研究了阴离子与载体的作用机理,结果表明配合物中心金属原子的结构以及载体本身的结构与电极响应行为之间有密切的构效关系.将电极用于药品分析,结果令人满意. 相似文献
3.
研究了以水杨醛缩邻苯二胺为配体的双核金属Cu(Ⅱ)、Hg(Ⅱ)配合物为中性载体的阴离子选择性电极,结果表明,双核Hg(Ⅱ)配合物作为中性载体的电极对I-具有良好的电位响应特性,且呈现反Hofmeister行为,其选择性序列为:I->Sal->ClO4->SCN->Br->F->NO2->NO3->SO32->SO42->H2PO4-.在pH 3.0的磷酸盐缓冲体系中该电极对I-具有最佳的电位响应,在1.0×10-1~9.0×10-6 mol/L浓度范围内呈近能斯特响应,斜率为-56.5mY/pI-(25℃),检测下限为7.8×10-6mol/L,采用交流阻抗及紫外可见光谱技术研究了电极的响应机理,并将电极用于药品分析,结果满意. 相似文献
4.
本文系统研究了一类新的前机锡化合物作中性载体电极的阴离子响应行为。实验结果表明,这类载体对水杨酸根呈现优良的电位响应性能和选择性,载体的结构与电极响应行为之间存在的密切的构效关系;其中三苄基锡对硝基酚盐为载体的电极对水杨酸根响应的线性范围为0.1 ̄3.98×10^-6mol/L,斜率为-57.05mV/decade,检测下限达2.51×10^-6mol/L。用交流阻抗和大块液膜阴离子迁移实验探讨了 相似文献
5.
首次研究以3-羧基水杨醛双缩二氨基硫脲异双核配合物[NiCuL]为中性载体的PVC膜电极,该电极对硫氰酸根离子(SCN-)具有优良的电位响应特性并呈现出反Hofmeister选择性行为,其选择性次序为:SCN->ClO4->I->Sal->Br->NO3->Ac->Cl->SO32->NO2->SO42-。电极在pH5.0的磷酸盐缓冲体系中,对SCN-在1.0×10-1~5.0×10-6 mol/L 浓度范围内呈近能斯特响应,斜率为58.0 mV/dec (28℃),检测下限为2.0×10-6 mol/L。该电极具有响应快、重现性好、检测限低等优点。采用紫外可见光谱技术研究了电极响应机理,电极初步应用于实际样品废水分析,结果与HPLC法一致。 相似文献
6.
研究了肉桂醛邻氨基苯甲酸金属配合物为电极载体的阴离子响应行为.实验结果表明,以肉桂醛邻氨基苯甲酸合铜(Ⅱ)[Cu(Ⅱ)-CMAA]为载体的电极具有选择性高、检测限低、重现性好、制备简单等优点,对硫氰酸根离子(SCN-)呈现出优良的电位响应性能并呈现反Hofmeister选择性行为,其选择性序列为:SCN->ClO4->Sal->I->Br->NO2->NO3->SO32->Cl->SO42->H2PO4-.电极在pH=5.0的磷酸盐缓冲体系中对SCN-在1.0×10-1~6.0×10-5mol/L浓度范围内呈近能斯特响应,斜率为-52.4mV/dec(20℃),检测下限为4.0×10-6mol/L.采用交流阻抗技术和紫外可见光谱技术研究了阴离子与载体的作用机理.并将电极应用于废水SCN-含量的测定,结果令人满意. 相似文献
7.
新型高选择性水杨酸根离子选择性电极的研究 总被引:1,自引:0,他引:1
首次研究了基于苯甲醛甘氨酸合镍(Ⅱ)金属配合物[Ni(Ⅱ)-BBAG]为中性载体的阴离子选择性电极.该电极对水杨酸根(Sal-)具有优良的电位响应性能,并呈现出反Hofmeister选择性行为,其选择性次序为Sal->C1O4->SCN->I->NO2->Br->NO3->SO32->SO42->Cl-.在pH5.0的磷酸盐缓冲体系中,电极电位呈现近能斯特响应,线性响应范围为5.0×10-5~1.0×10-1mol/L,斜率为-58.5 mV/dec(20℃),检测下限为2.0×10-5mol/L.采用交流阻抗技术和紫外可见光谱技术研究了电极的响应机理,结果表明配合物中心金属原子的结构以及载体本身的结构与电极的响应行为之间有非常密切的构效关系.并将电极用于药品分析,其结果令人满意. 相似文献
8.
以乙酰基吡啶Schiff碱铜配合物为中性载体制备了一种具有优良电位响应特性的PVC膜阴离子电极,该电极对硫氰酸根离子(SCN-)呈现出反Hofmeister序列行为,其选择性顺序为:SCN->ClO4->Sal->I->Br->SO42->HCO3->SO32->NO3->NO2->Cl->F-.电极在pH5.0的磷酸盐缓冲溶液体系中对SCN-在2.0×10-6~1.0×10-1 mol/L浓度范围内呈现近能斯特响应,斜率为-55.5 mV/dec,检出限为9.0×10-7 mol/L.采用交流阻抗技术研究了阴离子与载体的作用机理,并将电极应用于银离子的定量分析. 相似文献
9.
该文研究了基于大环四氮杂四烯基金属配合物{[6,13-二乙酰基-5,14-二甲基-1,4,8,11-四氮杂十四-4,6,11,13-四烯基(2-)]合铜(Ⅱ)},[Cu(Ⅱ)LH2]为中性载体的阴离子选择性电极,该电极对硫氰酸根离子(SCN-)呈现出优良的电位响应性能和选择性,其选择性次序为:SCN->ClO4->NO2->Cl->Br->NO3->SO42->I-.采用交流阻抗技术和紫外可见光谱技术初步研究了电极的响应机理;并将电极初步应用于实际样品分析,结果令人满意. 相似文献
10.
高选择性,高灵敏度水杨酸根离子电极研究 总被引:1,自引:0,他引:1
本文系统研究了三种六配位有机锡化合物的阴离子响应行为。实验证明,这些配合物对水杨酸根离子均呈出现选择性的电位响应性能,更为重要的是其电位响应性能与配体的结构之间呈现出较为密切的构效关系,随载体共轭程度的增大,电极对水杨酸根离子响应的线性范围变窄,灵敏度下降,检测下限上升,并且电极的选择性能变差。其中,以双(戊二酮)络二苄基锡为载体的电极对水杨酸根离子呈出现最优良的电位响应性能和选择性,在pH5.0 相似文献
11.
该文研究了基于水杨醛缩碳酰亚胺合钴(Ⅱ)[Co(Ⅱ)-SAU]为中性载体的PVC膜电极.该电极对水杨酸根离子(Sal-)具有良好的电位响应特性,且呈现反Hofmeister选择性行为,其选择性序列为:Sal->ClO4->I->SCN->NO2->NO3->Br->SO42->SO32->Cl-.在pH=4.0的磷酸盐缓冲体系中该电极具有最佳的电位响应,在1.0×10-1~9.0×10-6 mol/L浓度范围内呈近能斯特响应,斜率为-54.9 mV/decade(20℃),检测下限为7.0×10-6 mol/L.采用紫外可见光谱技术研究了电极的响应机理,并将电极用于药品分析,结果比较满意. 相似文献
12.
基于铜(Ⅱ)席夫碱配合物为中性载体的高选择性水杨酸根传感器的研究 总被引:1,自引:0,他引:1
该文合成了双水杨醛缩4,4,-二氨二苯甲烷铜(Ⅱ)金属有机配合物,并以此配合物为中性载体,制得PVC膜离子选择性电极.该电极在pH值为4.0~8.5范围内对水杨酸根离子有较好的Nernst响应,且呈现反Hofmeister序列行为.电极具有良好的选择性、稳定性和重现性,其线性范围为2.7×10-5~1.0×10-1 mol/L.通过UV-Vis、交流阻抗技术分析了电极响应机理,将该电极初步应用于药品分析中,其测定结果与经典滴定法测定结果基本一致. 相似文献
13.
14.
以二丙烯酸脂肪族尿烷酯为基料,碘化十二烷基三庚基铵为离子载体,采用光固化聚合膜研制水杨酸根电位传感器.实验中对膜的成份,诸如交联剂、增塑剂、引发剂的种类和用量以及载体的用量进行了优化.优化后的膜与PVC膜比较具有较大的机械强度和较高的附着力,制成的电极对水杨酸根离子响应的线性范围为1.6×10-5~1.0×10-1mol/L,检测下限5.6×106mol/L,电极斜率为55.5 mV/decade,对常见阴离子电位选择性系数进行了测试,电极具有较好的选择性,用于人体尿液样品水杨酸根的测定获得满意的结果. 相似文献
15.
以水杨醛缩α-萘胺合钴(Ⅱ)[Cu(Ⅱ)-SANA]为中性载体的PVC膜电极对硫氰酸根离子(SCN-)具有优良的电位响应特性并呈现出反Hofmeister选择性行为,其选择性次序为:SCN->Sal->ClO4->->NO3->NO2->Br->H2PO4->I->SO32->SO42-.在pH=4.0的磷酸盐缓冲体系中该电极具有最佳的电位响应,在5.0×10-6~1.0×10-1mol/L浓度范围内呈近能斯特响应,斜率为-52.6mV/decade(25℃),检测下限为3.0×1.0-6mol/L.采用交流阻抗研究了电极的响应机理,并将电极用于回收率测定,结果比较满意. 相似文献
16.
冠醚作为中性载体的离子选择电极 总被引:4,自引:0,他引:4
六十年代末,随着对大环抗生素结构和性质的了解,研制成了性能优良的以缬氨霉素作为中性载体的钾离子选择电极。之后不久,又开始了以冠醚作为中性载体的研究。近十多年来,这个领域的研究工作取得了很大进展,已用各种单冠醚、双冠醚和二酰胺型开链冠醚制成了许多种性能良好的离子选择电极,在分析化学中已得到广泛应用。本文着重介绍冠醚作为中性载体的PVC膜离子选择电极的进展。 相似文献
17.
首次研究了基于水杨醛缩亚辛胺合铜(Ⅱ)金属配合物[Cu(Ⅱ)-SADOA]为中性载体的PVC膜电极.该电极对硫氰酸根离子具有优良的电位响应性能和选择性并呈现出反Hofmeister选择性行为,其选择性次序为SCN->ClO4->Sal->I->Br->NO2->NO3->SO32->Cl->SO42->H2PO4-.在pH=5的磷酸盐缓冲体系中,电极电位呈现近能斯特响应,线性响应范围为3.0×10-6~1.0×10-1 mol/L,斜率为-55.7mV/dec(20℃),检出下限为1.0×10-6 mol/L.采用交流阻抗技术和紫外可见光谱技术研究了电极的响应机理,结果表明配合物与电极的响应行为之间有非常密切的构效关系.该电极具有响应快、重现性好、检出限低、制备简单等优点.将电极用于实际样品分析,其结果令人满意. 相似文献
18.
以异双四齿Schiff碱金属铜(Ⅱ)配合物为载体的高选择性硫氰酸根电极的研究 总被引:1,自引:0,他引:1
该文研究了异双四齿Schiff碱铜(Ⅱ)金属配合物[Cu(Ⅱ)-USTT],研究了基于该种金属配合物为中性载体的阴离子选择性电极的电位响应特性.该电极对硫氰酸根离子呈现出优良的电位响应性能和选择性,其选择性序列为:SCN->C104->I->NO3->SO32->NO2->Cl->CH3COO->Br->SO42-,电极在pH=4.0的磷酸盐缓冲体系中对SCN-在1.0×10-1~1.0×10-6 mol/L浓度范围内呈近能斯特响应,斜率为-54.8 mV/dec,检测下限为2.6×10-6 mol/L.采用紫外光谱分析技术研究了阴离子与载体的作用机理.电极制作简便,响应快,重现性和稳定性好.将该电极用于环境废水中SCN-的监测,获得满意的结果. 相似文献
19.
20.
研究了双核三苄基甲醇锡(Ⅳ)哌嗪荒酸酯配合物[Sn(Ⅳ)-BTMTP]为中性载体的PVC膜阴离子选择性电极.这类电极对硫氰酸根离子呈现出优良的电位响应性能和选择性,并呈现出反Hofmeister选择性行为.其选择性序列为:SCN->I->ClO4->NO2->NO3->Cl->SO42->AC-,该电极在pH=4.0的磷酸盐缓冲体系中对SCN-呈超能斯特响应,响应范围为1.0×10-1~3.2×10-5mol/L,斜率为-72.4mV/dec,检出限为1.28×10-5mol/L.采用交流阻抗及紫外光谱研究了阴离子与载体的作用机理.将该电极用于废水分析,结果令人满意. 相似文献