首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The pattern of sperm centrosomal (centriolar) inheritance, centrosomal replication and perpetuation during mitosis of the human embryo is reviewed with a series of electron micrographs. Embryonic cleavage involves repeated mitoses, a convenient sequence to study centriolar behaviour during cell division. After the paternal inheritance of centrioles in the human was reported (Sathananthan et al., 1991a), there has been an upsurge of centrosomal research in mammals, which largely follow the human pattern. The human egg has an inactive non-functional centrosome. The paternal centrosome contains a prominent centriole (proximal) associated with pericentriolar material which is transmitted to the embryo at fertilization and persists during sperm incorporation. Centriolar duplication occurs at the pronuclear stage (interphase) and the centrosome initially organizes a sperm aster when male and female pronuclei breakdown (prometaphase). The astral centrosome containing diplosomes (two typical centrioles) splits and relocates at opposite poles of a bipolar spindle to establish bipolarization, a prerequisite to normal cell division. Single or double centrioles occupy pivotal positions on spindle poles and paternal and maternal chromosomes organize on the equator of a metaphase spindle, at syngamy. Bipolarization occurs in all monospermic and in most dispermic ova. Dispermic embryos occasionally form two sperm asters initially and produce tripolar spindles (tripolarization). Anaphase and telophase follows producing two or three cells respectively, completing the first cell cycle. Descendants of the sperm centriole were found at every stage of perimplantation embryo development and were traced from fertilization through cleavage (first four cell cycles) to the morula and hatching blastocyst stage. Centrioles were associated with nuclei at interphase, when they were often replicating and occupied pivotal positions on spindle poles during mitosis. Sperm remnants were associated with centrioles and were found at most stages of cleavage. Centrioles were found in trophoblast, embryoblast and endoderm cells in hatching blastocysts. Pericentriolar, centrosomal material nucleated astral and spindle microtubules. Abnormal nuclear configurations observed in embryos reflect mitotic aberrations. The bovine embryo closely resembles the human embryo in centriolar behaviour during mitosis. It is concluded that the sperm centrosome is the functional active centrosome in humans and is likely the ancestor of centrioles within centrosomes in foetal and adult somatic cells. The role of the sperm centrosome in embryogenesis and male infertility is discussed, since it is of clinical importance in assisted reproduction.  相似文献   

7.
8.
9.
10.
11.
12.
The cytoskeletal components of hamster oocytes, zygotes, and spontaneously activated parthogenotes were examined after immunocytochemical labeling. Microtubules were found only in the anastral, tangentially arranged second meiotic spindle of unfertilized oocytes. Taxol treatment of unfertilized oocytes greatly augmented astral microtubules in both the metaphase II spindle and the cortex. Disruption of the meiotic spindle microtubules with nocodazole resulted in cortical chromosomal scattering. During hamster sperm incorporation and pronuclear formation, no sperm aster was detected in association with the male DNA. Instead, a large overlapping array of microtubules assembled in the cortex. By mitosis, this interphase array disassembled and an anastral metaphase spindle formed. Microtubule and chromatin configurations were also imaged in hamster oocytes injected with human sperm. Astral microtubules were absent from the sperm centrosome. The implications of these results are discussed in relation to the hamster oocyte penetration assay, a test commonly used by in vitro fertilization clinics to demonstrate the fertilizing ability of human sperm. We conclude that since hamsters and humans follow different methods of centrosome inheritance, maternal and paternal, respectively, the hamster may be an inappropriate model for exploring microtubule and centrosomal defects in humans or for assaying postinsemination forms of human male fertility defects.  相似文献   

13.
14.
Obtaining karyotypes from human spermatozoa after microinjection into Syrian golden hamster oocytes is difficult and the hitherto reported results are unsatisfactory. This may be related to the injection and culture technique or to the high susceptibility of the hamster oocytes to undergo parthenogenetic activation or both. Therefore, we investigated the hamster oocyte-human sperm microinjection model using the following two approaches: (i) application of contemporary techniques for injection (touching the sperm tail) and culture (hamster embryo culture medium, HECM-3, 10% CO2) and (ii) omission of Ca2+ from the injection medium. Thus, in the first series of experiments, 252 hamster oocytes were injected with human spermatozoa. Among the 219 (87%) oocytes that survived the injection procedure, the mean percentages of male pronucleus formation [two pronuclei (2PN), two polar bodies (PB)], mitotic metaphase entry and sperm chromosome spreads were 41.4, 27.8 and 18.2% respectively. Analysis of the oocytes which failed to develop the male pronucleus following injection revealed that most of them had developed only the hamster female PN while the sperm nuclei were either intact or swollen (partially decondensed), indicating that failure of oocyte activation was not the likely reason for the failure of male PN formation in these oocytes. In the next series of experiments, sibling oocytes were alternately injected with spermatozoa suspended either in the regular (1.9 mM Ca2+) or Ca2+-free injection medium (experiment set 2, n=278). A significant improvement was noted in the mean percentages of oocytes with 2PN, 2PB, metaphase entry and sperm chromosome spreads in the Ca2+-free group versus the regular group (2PN, 2PB: 51 versus 36.6%, metaphase entry: 36.3 versus 26.9% and sperm chromosome spreads: 28 versus 20.4%; all P < 0.04). Thus, parthenogenetic activation appears to be one of the contributing factors for the failure of male PN formation after heterospecific hamster ICSI. From these experiments it can be concluded that application of the advanced injection and culture techniques and omission of Ca2+ from the injection medium are promising for the routine application of the hamster oocyte microinjection for karyotyping of human spermatozoa with poor fertilizing capacity.  相似文献   

15.
The effect of histone acetylation was monitored on CHO chromatin structure, following the addition of 7 mM Na-butyrate to the cell culture medium. The properties of both control and hyperacetylated chromatins and nuclei were investigated by circular dichroism, ethidium bromide intercalation, differential scanning calorimetry, and affinity chromatography. Our results are compatible with modest but significant alterations in the various levels of chromatin organization, as a result of the charge neutralization of some lysine residues within the N-terminal region of the histonic octamer. Namely, large statistically significant differences do exist in the heat capacity thermograms of native nuclei, where unfolding into single nucleofilament of the highly packed native chromatin superfiber appears associated with acetylation; at the same time CD, EB, and affinity chromatography point to modest but consistent differences in the compactness of isolated nucleosomes and polynucleosomes.  相似文献   

16.
17.
18.
Microtubules and microfilaments are major cytoskeletal elements in mammalian ova and are important modulators of many fertilization and post-fertilization events. In this study, the integrated distribution of microtubules and microfilaments in pig oocytes were examined under a laser scanning confocal microscope, and the requirements of their assembly during in vitro fertilization and parthenogenesis in in vitro matured pig oocytes were determined. After sperm penetration, an aster of microtubules was produced in the spermatozoon, and this microtubule aster filled the whole cytoplasm during pronuclear movement. During pronuclear formation after activation by insemination, microfilaments became concentrated at the male and female pronuclei and, after electrical stimulation, at the female pronucleus. At metaphase of cleavage, microtubules were detected in the spindle and microfilaments were found mainly in the cortex. At anaphase, microtubule asters assembled at each spindle pole. During cleavage, large asters filled each daughter blastomere and a microfilament-rich cleavage furrow was observed. Cytochalasin B, a microfilament inhibitor, inhibited microfilament polymerization but affected neither pronuclear formation nor movement. However, syngamy and cell division were inhibited in eggs treated with cytochalasin B. Treatment with nocodazole after sperm penetration inhibited microtubule assembly and prevented migration leading to pronuclear union and cell division. These results indicate that microtubule and microfilament assembly in pig oocytes are integrated during fertilization and are required for the union of sperm and egg nuclei and for subsequent cell division.  相似文献   

19.
Phosphorylation of the nucleosome core histone H3 (H3) on Ser-10 is thought to be a prerequisite for chromatin condensation at mitosis. Although during interphase, cell differentiation, or mitogenic activation of quiescent cells, changes in chromatin structure that involve local chromatin condensation/decondensation also occur, little is known about H3 phosphorylation during these transitions. Using the recently developed sensitive marker to monitor H3 phosphorylation, namely, the mAb that recognizes the phosphorylated epitope of H3 (anti-H3-P mAb), the status of H3 phosphorylation was assayed in individual human lymphocytes after their mitogenic stimulation (G0 to G1 transition) and in human leukemic HL-60 cells induced to differentiate by all-trans-retinoic acid (RA), 1,25-dihydroxyvitamin D3 (vit D3), dimethyl sulfoxide (DMSO), or phorbol myristate acetate (PMA). Multiparameter flow cytometry was used to correlate H3 phosphorylation with cell cycle position. The specificity of the anti-H3-P mAb was confirmed by the loss of its binding following cell treatment with alkaline phosphatase. The presence of phosphorylated H3 was detected during interphase in HL-60 cells and in normal lymphocytes at a level severalfold lower than during mitosis. No significant changes in H3 phosphorylation were observed during lymphocyte stimulation. Unexpectedly, the level of H3 phosphorylation was over fourfold higher in monocytes than in lymphocytes or granulocytes from peripheral blood. The punctate pattern of labeling with anti-H3-P mAb in monocyte nuclei suggests that H3 is phosphorylated in small clusters of adjacent nucleosomes. Differentiation of HL-60 cells was accompanied by a rise in H3 phosphorylation, which was higher after induction by RA, vit D3, and PMA (approx. threefold) than after DMSO (approximately 20%). The data indicate that in addition to being a critical event during chromatin condensation at mitosis, H3 phosphorylation plays a role during chromatin changes accompanying differentiation of HL-60 cells, in particular, along the monocytic lineage. The high level of H3 phosphorylation in monocytes may serve as a marker of these cells and is being explored as a possible diagnostic and prognostic tool in monocytic leukemias.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号