首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 69 毫秒
1.
RFA改进型燃料组件是西屋公司设计的能应用于大功率先进压水堆的改进型燃料组件。SCALE计算程序是一款在国际上得到广泛认可的综合性建模及模拟程序包,可用于核设计与核安全分析。基于SCALE计算程序,针对大功率先进压水堆的乏燃料贮存水池,建立恰当的计算模型,并选取合理的保守假设,分析乏燃料水池正常贮存及事故工况下的临界安全。计算结果表明一区正常贮存工况keff值为0.901 29,组件跌落事故工况下,有效增值因子为0.907 93。二区正常贮存工况下,计算模型keff值为0.909 98,新燃料组件误插入事故工况keff值为0.924 07。先进压水堆乏燃料贮存水池正常贮存工况及事故工况的有效增值因子均小于0.95,处于次临界状态。该设计模型可确保燃料堆内贮存区域临界状态安全可控。  相似文献   

2.
基于国际先进的核设计与安全分析计算程序SCALE,针对我国自主研发的先进压水堆乏燃料贮存水池,建立恰当的计算模型,并选取合理的保守假设,计算乏燃料水池正常贮存及事故工况下的反应性,评估计算模型的临界安全,分析该程序对我国先进反应堆乏池计算的适用性。计算结果表明该先进压水堆乏燃料贮存水池正常贮存工况及事故工况的有效增值因子均小于0.95,处于次临界状态。该设计模型可确保燃料堆内贮存区域临界状态安全可控。SCALE计算程序适用于我国自主研发的先进压水堆乏燃料水池临界安全计算。  相似文献   

3.
贾晓淳 《同位素》2022,35(6):513
在新燃料组件运输过程中,临界安全是重点。使用MCNP程序对中国先进研究堆新燃料组件的运输进行临界安全计算分析,通过选取最不利临界安全的次临界限值、组件模型参数、事故工况来保证计算结果的保守性。结果表明,运输货包的临界安全指数可确定为0。该结果可为中国先进研究堆(CARR)的新燃料组件运输容器的研发提供参考依据。  相似文献   

4.
利用MONK程序对MOX热室项目燃料贮存水池进行了核临界安全分析。针对给定的水池尺寸和燃料棒数量,确定燃料以分区方式贮存。选取国际公布的临界基准实验数据,验证并确定MONK程序计算分析类似物料形态时的偏倚和次临界限值,其次进行保守假设,确定贮存水池在正常及事故工况下其中子有效增殖因数,评价贮存水池的安全性。计算结果表明,贮存水池在最危险事故工况下,其最大中子增殖因数小于次临界限值,系统处于临界安全状态。  相似文献   

5.
为论证新燃料组件贮存是否满足核临界安全要求,对CEFR新燃料贮存系统进行核临界安全分析计算。  相似文献   

6.
乏燃料水池中存放乏燃料组件,依靠池水带走衰变热、屏蔽放射性,失去冷却是乏燃料水池最严重的事故工况之一。在池水逐渐蒸干和快速流失两种失冷方式下,基于可能的事故过程,研究芯块和池水温度升高、棒栅距失控、组件严重损毁、中子吸收体失效等各种假设情景对临界安全的影响,并对各种假设情景的可信度进行了评估。研究结果表明:水的丧失使系统的慢化能力大幅减弱,燃料温度升高引起的多普勒负反馈效应,都增加了系统的次临界安全裕量。即使在水池补水、重新淹没乏燃料的过程中,在可信的堆积模型下,系统也能够保证次临界安全。在不可信的中子吸收体硼钢损坏的情景下,得到非常保守的系统keff以及相应的缓解措施,仅供参考。基于目前的知识和工程经验,乏燃料水池失冷事故,在可信事故工况下,是可以保证次临界安全的。  相似文献   

7.
乏燃料水池是岭澳核电站燃料厂房的核心,其结构和荷载组成复杂。本文详细介绍了乏燃料水池部分三维有限元模型的建立、荷载计算与按照RCC-G进行的荷载组合、以及相应的内力分析和依照CCBA-68进行的配筋计算,同时也着重介绍了依据HOUSNER刚性壁理论对流体动力荷载所进行的等效简化计算。为业主实施燃料密集贮存提供了决策依据,同时也为核岛厂房同类水池结构分析提供了方法。  相似文献   

8.
美国Kilopower空间堆在掉落事故下的keff不满足我国现行空间堆掉落临界安全要求。该反应堆在掉落过程中,若反射层外围的B4C脱落,则存在瞬发超临界的严重安全隐患。针对此问题,本文对反应堆方案进行调整,提出3种解决方案,各方案均可满足掉落临界安全要求。此外,为研究各方案的优劣,从尺寸、质量、物理和热工运行特性等方面对各方案进行综合比较,提出了最优建议方案。  相似文献   

9.
高温气冷堆新燃料元件运输容器临界安全分析   总被引:2,自引:1,他引:2       下载免费PDF全文
采用基于蒙特卡罗方法的MCNP5程序对高温气冷堆所用的球形燃料元件进行描述;根据包覆燃料颗粒在燃料球内的分布性质构建了8种不同模型,并研究不同模型对有效增殖因子(keff)和计算时间的影响,获得了临界计算问题中最优的燃料球模型;运用MCNP5描述燃料球运输容器,并研究了容器中子吸收板厚度、外容器壁厚、缓冲层材料、反射层材料、容器形状、容器结构缺失和水密度等影响运输容器临界安全的因素。结果表明,所研究的高温气冷堆新燃料元件运输容器在正常运输条件下和事故运输条件下均处于临界安全状态,其临界安全指数(CSI)可定为0。   相似文献   

10.
乏燃料离堆贮存水池厂房设计、建造了多道封闭屏障,以防止放射性物质向周围环境的失控释放.  相似文献   

11.
通过建立合理的空间分布模型,对后处理厂乏燃料溶解不同阶段的核临界安全问题进行分析,同时对重要的核临界安全参数给予影响评价。结果显示,在仅考虑易裂变核素形态转变的理想情况下,溶解初期为最危险状态;温度升高和硝酸浓度增大对系统的影响为负效应,影响均小于4%;可溶中子毒物的加入与燃耗信任制技术的应用能大幅提高系统的经济性,影响均可达到30%。  相似文献   

12.
核反应堆电源具有寿命长、可全天候工作等特点,可作为星球表面及其他深空探测任务的电源。针对星球表面用核反应堆电源在发射过程中重返地面的临界安全问题,提出了星球表面用核反应堆的临界安全分析要求、分析假设与模型,并对反应堆临界安全特性及采取的临界安全措施进行了计算分析。计算结果表明,不同假设掉落环境下的星球表面用核反应堆的有效增殖因数均小于0.98,满足临界安全要求。反应堆通过采用Mo-14%Re合金结构材料、设置相对较厚的堆芯反射层以及在反射层包壳和堆芯外围涂覆Gd2O3涂层等措施有利于确保反应堆在事故时处于次临界状态。  相似文献   

13.
以CASTOR 1000/19干式贮存容器装载田湾核电站六角形乏燃料组件为例,研究六角形乏燃料干式贮存的临界安全问题。基于新燃料假设,应用MONK9A程序对贮存容器满装载乏燃料进行不同工况下keff的计算。计算结果表明:正常工况下,keff远小于临界安全限值,是临界安全的;事故工况下,当235U富集度大于3.15%时,系统存在临界安全风险,须减少乏燃料装载量来确保临界安全。考虑燃耗信任制后,采用相同的模型计算得出贮存容器满装载的参考装载曲线,按此曲线要求装载能确保所有工况下的系统临界安全。采用燃耗信任制技术提高了贮存容器的利用率。该研究可为田湾核电站采用乏燃料干式贮存方案提供依据。  相似文献   

14.
液态金属冷却剂在给反应堆带来运行安全与热效率优势的同时,也给反应堆带来了复杂的换料系统,其中大型液态金属反应堆采用的湿式乏燃料贮存桶是乏燃料卸料过程的核心设备,临时装载了大量的乏燃料组件,具备一定的安全风险。本文采用概率安全分析(PSA)方法对乏燃料贮存桶进行风险评价,通过运行状态分析、始发事件分析、事故序列分析以及简单的定量化,初步获得其导致乏燃料组件发生损伤的事故序列和最小割集,识别了关键系统与设备。结果表明,相对于反应堆本身的风险,乏燃料贮存桶本身风险虽低但依然不可忽略,且风险评价结果对反应堆的运行方式以及清洗系统的可靠性较为敏感。此外还对该系统的设计改进与安全优化进行了讨论。  相似文献   

15.
基于SCALE6程序包对西屋公司采用燃耗信任制技术的AP1000核电厂乏燃料贮存格架(SFSRs)临界安全分析过程进行了复现,在此基础上结合AP1000核电厂堆芯反应性控制特性,分析了轴向燃耗分布对系统反应性的影响。结果表明,高燃耗下采用机械补偿(MSHIM)轴向燃耗分布计算得到的系统反应性更保守,同时临界安全分析中需考虑吸收体在组件燃耗过程中对反应性的影响,且不应信任可溶硼。  相似文献   

16.
信用核素选取是基于燃耗信用制乏燃料贮存临界安全分析的关键一步。通过对不同富集度、燃耗深度及停堆冷却时间下典型PWR燃料组件分析,以核素中子吸收份额大小排序为依据,筛选出对总的中子吸收起主要贡献的核素。结果显示,47个核素即可包络停堆后0~20a内影响乏燃料贮存系统反应性的所有核素中的99%。通过核素敏感性因子分析证明依据中子吸收份额排序选取重要核素的方法是合理的,与基准算例的结果对比证明所筛选出的核素能足够代表影响系统反应性的所有重要核素。  相似文献   

17.
最佳估算方法可以同时对多个参数按概率分布进行抽样,从而模拟系统真实的物理状况,计算结果的容忍区间及置信水平与抽样数目有关。本文将最佳估算方法应用于压水堆核电站乏燃料贮存格架和燃料运输容器的临界安全分析,采用非参数抽样统计方法,多参数同时抽样,并对各抽样参数的敏感度进行分析。抽样计算的结果统计分析表明,最佳估算方法更接近真实值,证明原逐参数单独进行敏感性分析方法的保守性并得到相应的保守裕量;对于特定研究对象参数的敏感性排序是稳定的,主要取决于参数自身的敏感性,参数的范围及分布的影响较小,应在相关设备的设计与制造中重点关注敏感度高的参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号