首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高旭  马庆林  高阳  李舒航 《电子学报》2019,47(12):2575-2581
为提高光电轴角编码器的分辨力,提出一种新型莫尔条纹信号细分方法并建立基于FPGA的光电位移信号倍频系统.根据理想莫尔条纹光电信号的数学模型,利用多倍角正余弦信号的函数性质,将原始莫尔条纹信号推导为n倍频的高阶信号;由幅值细分理论,离线建立基于高阶正余弦信号的高分辨力幅值细分查找表;根据增量式、绝对式光电编码器的不同功能,分别阐述了应用该幅值细分查找表实现编码器高分辨力的倍频技术;同时又指出本文细分方法应用的约束条件.最后,以直径为40mm,分辨率为2500P/R的欧姆龙E6B2-CWZ6C增量式光电编码器为实验对象,在转速范围200~3000rpm的同步电机驱动下,编码器输出波形频率范围约为8.3kHz~125kHz,在基于频率为10kHz的模拟输入信号下,采用本文细分方案设置四倍频设计实验,该系统可以快速将频率增加到原来频率的4倍;同时,基于4倍频原理设计了128倍频实验,并进行实验验证,同样得到该系统可以快速增加到输入频率的128倍.该设计方法及系统与传统细分方法相比较,具有开发周期短、集成度高、模块化、速率快等特点.  相似文献   

2.
为保证光电轴角编码器在恶劣工作环境下的细分精度,提出一种基于Hilbert-Huang变换的误差补偿方法。针对编码器系统受正弦振动引起的测角故障,提出一种莫尔条纹误差信号的数学模型;采用经验模态分解算法,获取误差信号的本征模态函数,分别对本征模态函数进行希尔伯特变换解调分析,提取包含干扰特征的莫尔条纹信号;同时,基于光电轴角编码器的精码信号方波信息,获取精码信号的基波时域频率;提取与基波时域频率匹配的本征模态函数包络分量。以24位光电轴角编码器为实验对象,实验结果表明:编码器莫尔条纹信号动态细分误差峰值由约200降低到1.54左右,细分精度明显提高。  相似文献   

3.
针对莫尔条纹信号质量对高精度编码器细分误差的影响,提出了基于离散傅里叶变换分析莫尔条纹信号质量的方法。该方法利用信号重构和傅里叶变换算法得到信号参数,真实地反应了莫尔条纹信号质量,提高了细分误差测量的准确性。编码器转动时,采集相位差为/2 的两路精码正弦光电信号,通过对采样信号的重构得到信号波形,利用离散傅里叶变换算法分析重构波形,求解信号的直流分量、幅值、相位和谐波分量等各项参数。最后,根据信号参数与细分误差的关系得到光电编码器的细分误差值,并进行了实验验证。实验结果表明,对某24 位绝对式光电轴角编码器细分误差进行测量,细分误差的峰值为+0.48和-0.21。相对于传统的细分误差测量方法,此方法测量速度快,测量精度高,适用于工作现场。  相似文献   

4.
为提高光电轴角编码器的细分精度及莫尔条纹光电信号的细分倍数,设计了一种基于改进粒子群算法的信号正弦性修正方法。首先,根据莫尔条纹光电信号的数学模型,分析信号质量指标对细分误差的影响;并从编码器的制作、调试、使用等环节出发,指出信号细分误差产生的根本原因;然后,对改进粒子群算法的基本原理和实现步骤做了具体阐述;最后,以21 位光电编码器为实验对象,依据其精码转换的方波信息实现精码信号的自适应采样,同时应用改进算法对采集的编码器原始光电信号进行数据预处理,通过辨识信号模型中的3 个待定参量,直接实现信号等幅性偏差、稳定性偏差、正交性偏差的修正;对算法处理后的莫尔条纹信号进行细分精度检测,实验结果表明:编码器细分误差峰值由19.08降低到2.86,细分精度明显提高。  相似文献   

5.
左洋  龙科慧  刘兵  刘金国  周磊  乔克 《电子学报》2015,43(10):1936-1940
为实现高精度光电编码器非匀速转动时动态细分误差的检测,提出了一种基于非均匀采样的莫尔条纹光电信号分析方法.首先,利用曲线拟合的最小二乘法将采集到的编码器非均匀信号数据重构出真实的信号波形.然后,根据离散傅里叶变换算法分析重构信号,同时推导出信号的频率、幅值和相位的计算表达式,运用软件仿真评估算法可行性.最后,采用该方法对某21位绝对式光电轴角编码器精码信号进行分析,根据信号参数与细分误差的关系获得动态细分误差,其细分极值误差为+2.41"和-3.08".实验结果表明,该方法利用信号重构和傅里叶变换算法得到信号参数,真实的反应了莫尔条纹信号质量,在编码器非匀速转动时,可有效地测量动态细分误差,为实际工作现场编码器精度误差的实时检测奠定了基础.  相似文献   

6.
为了保证高精度光电轴角编码器在恶劣工作条件下的细分精度,设计了基于高分辨率数字电位计的实时补偿处理系统。依据莫尔条纹光电信号的数学模型,说明了由信号等幅性偏差和直流电平漂移引起的细分误差的空间分布特征,并得出误差规律及计算公式,从编码器的光机装调、码盘均匀性、光敏元件调试等制作环节出发,指出了编码器光电信号细分误差的根本特性;受高精度光电编码器分辨力的约束,从编码器光敏元件输出莫尔条纹信号的形式出发,构建了分辨率为0.1 的数字电位计查找表;并设计了实时补偿的关键算法。以23位光电编码器为实验对象,在-40~60 ℃条件下对补偿处理系统测试,实验结果表明:直流漂移1.2%,等幅性2%,且自动补偿时间约为3 s,满足编码器分辨力(0.154)和工作实时性的要求。该方法可实际应用于编码器系统,能够提高编码器的环境适应性和测角可靠性。  相似文献   

7.
卢新然  宋路  万秋华 《红外与激光工程》2017,46(9):917007-0917007(6)
红外发光管是光电编码器的重要组成部分,而光源参数对莫尔条纹信号的正弦性和正交性有直接影响,从而影响光电编码器的细分精度和分辨力。文中研究了其发散角、光源宽度对编码器的信号影响。首先,分析了光源对光栅信号光通量的影响,运用频域方法导出了透光特性函数;然后,分析了两种不同光源对同一码盘形成信号的影响;最后,应用Matlab仿真计算了莫尔条纹信号的对比度、正交性、正弦性。实验结果表明,使用两种不同光源的编码器精度相差达到30%,改进后的编码器高次谐波占比明显减少,信号稳定性好。因此研究光源参数对提取高质量莫尔条纹有重要意义,并为高精度编码器设计提供重要参考依据。  相似文献   

8.
高旭  万秋华  卢新然  杜颖财  陈伟 《红外与激光工程》2016,45(2):217002-0217002(6)
为了保证高精度光电编码器在恶劣工作环境下的精确测量,建立一种基于高分辨力数字电位计+DSP+CPLD的莫尔条纹光电信号自动补偿系统。首先,介绍了自动补偿系统的工作原理及构成,并设计了系统使用过程中的工作模式;融合莫尔条纹信号各个偏差的补偿算法,建立了光电信号细分误差的综合补偿模型;然后,具体阐述了系统的硬件设计、相关软件设计,并分析了补偿系统自身存在的系统误差;最后,以24位光电编码器为实验对象,对该补偿系统进行测试分析,实验结果表明:自动补偿系统可实现编码器精码信号直流电平漂移、等幅性偏差、正交性偏差及二次、三次、五次谐波偏差的综合补偿,可使实际的静态细分误差减小0.61。该系统可用在编码器的工作现场,实现莫尔条纹信号细分误差的自动修正。  相似文献   

9.
莫尔条纹的乘法倍频是一种利用函数本身的性质,来提高原始信号重复频率的细分方法.它不仅可以解决高速运动装置位移的精密测量问题,而且还可以同其它电子学细分方案结合使用,大大提高计量光栅系统的分辨率.由于莫尔条纹原始信号质量的好坏,直接决定了倍频后信号波形的失真情况.于是,针对莫尔条纹原始信号的正弦性、正交性、等幅性及含直流电平这几种典型特征,文中采用了美国Mathworks公司最新推出的Matlab软件对以上莫尔条纹的原始信号进  相似文献   

10.
莫尔条纹在微小振动测量中的应用   总被引:3,自引:0,他引:3  
微小振动的频率和振幅的测量在工程技术领域具有重要意义 ,本文提出利用动态莫尔条纹光电信号测量微小振动的频率和振幅的方法。由于莫尔条纹具有放大作用 ,采用对莫尔条纹光电信号的细分技术 ,测量精度可以做得较高。实验表明 ,振幅测量分辨率可达光栅常数的二十分之一以上。  相似文献   

11.
光栅副是增量式光电编码器最主要组成部分,它的结构和衍射效应直接与检测精度相关。文中深入地分析了单光栅与双光栅衍射特点,并且从空间调制模型的角度推导光栅副对莫尔条纹的影响。从宏观和微观两个角度分析光栅副的屏函数,研究莫尔条纹光电信号输出波形的不确定原因和反差对比度,进而证明单光栅测量可以减少输出信号的频率成分,获得较高的细分精度和反差对比度。为了证明单光栅角度检测的可行性,给出了一套完整的单光栅角度检测方法。  相似文献   

12.
杨顺平 《电光与控制》2015,22(2):100-104
鉴于外场环境和专项试验对绝对式编码器的稳定性要求越来越高,对传统的绝对式编码器处理电路进行了技术改进。该处理电路全部采用A/D转换器采集放大与整形之后的模拟信号,通过软件完成光电信号的比较、细分、译码、校正、平均和参数整定等功能,实现了把轴角实际转动的角度值转换成自然二进制数字代码。经实际项目论证,该编码器运行稳定。  相似文献   

13.
基于莫尔条纹的光纤惯性式振动传感器系统   总被引:1,自引:1,他引:0  
设计了一种基于莫尔 条纹的光纤惯性式振动传感器,通过光栅对(grating pair)的相对运动产生莫尔条纹实现振 动位移的感知,由4路光纤作 为信号的传输通道将莫尔条纹信息传输至信号处理电路。详细讨论了莫尔条纹与振动信号的 关系,经信号 处理电路以及莫尔条纹细分、方向辨别算法,将莫尔条纹信号转换成振动位移和方向。通过 幅频特性补偿 电路对低频段进行补偿,实现平坦的宽频带频率响应。实验结果表明,传感器的谐振频率为 5.35Hz,通过 补偿后下降至0.05Hz;在0.1~1000Hz频率响应范围内,起伏小于0.011mm。  相似文献   

14.
设计了一种基于莫尔条纹的光纤惯性式振动传感器,通过光栅对(grating pair)的相对运动产生莫尔条纹实现振动位移的感知,由4路光纤作为信号的传输通道将莫尔条纹信息传输至信号处理电路。详细讨论了莫尔条纹与振动信号的关系,经信号处理电路以及莫尔条纹细分、方向辨别算法,将莫尔条纹信号转换成振动位移和方向。通过幅频特性补偿电路对低频段进行补偿,实现平坦的宽频带频率响应。实验结果表明,传感器的谐振频率为5.35Hz,通过补偿后下降至0.05Hz;在0.1~1 000Hz频率响应范围内,起伏小于0.011mm。  相似文献   

15.
光电编码器作为一种具有代表性的测角元件,为保证其在恶劣工作环境下的测角精度,介绍了光电编码器信号处理的关键技术;从衡量莫尔条纹光电信号质量的指标出发,指出补偿光电信号对提高编码器测角精度的重要性;从光、电两方面,阐述了国内外光电编码器信号自适应补偿技术的研究现状;并对典型补偿处理技术进行分析,揭示了工程编码器对信号补偿处理技术实时性的需求;最后,针对国内外对光电编码器的研究进展,简要说明了光电编码器未来的发展趋势。  相似文献   

16.
为了实现在不增加体积和重量的前提下提高小型光电编码器分辨力和细分精度,对光电编码器高分辨力细分技术进行了研究。首先,分析了影响小型光电编码器分辨力及细分精度的主要因素;其次,利用ADC841单片机对A/D转换的增益误差和失调误差进行修正;最后,优化电子学细分算法,设计出小型光电编码器高分辨力的信号处理电路。实验结果表明,该设计可以实现编码器精码信号的1 024细分,细分周期误差的峰峰值由163减小到70;将外径为40 mm的小型光电编码器分辨力提高4倍至4.98,精度提高至30。设计的编码器细分方法,电路结构简单、细分数高,可应用于对体积和重量有严格要求的绝对式和增量式光电编码器中。  相似文献   

17.
为了实现光栅莫尔条纹的精确计数和微位移的高精度测量,提出了一种新的莫尔条纹精确计数算法.当光栅移动时,通过CCD摄像器件将莫尔条纹转换为动态光电信号,即随时间变换的正弦信号.利用条纹周期性的能量分布曲线,对移动的莫尔条纹进行精确计数和判向,通过使用Matlab软件编辑界面,直观的显示光栅莫尔条纹移动个数及光栅微小位移.通过对莫尔条纹精确计数达到了对微小位移测量.实验结果表明,测量精度可以达到1μm.  相似文献   

18.
苏小刚  胡晓东  肖茂森  张晓东 《红外与激光工程》2017,46(4):417007-0417007(6)
单圈绝对式编码器相比于增量式编码器及传统的绝对式编码器有独特的优势,其关键技术在于译码系统的设计及译码算法的研究。为了提高单圈绝对式编码器集成度、响应速度及精度,设计了译码系统,该系统采用线阵CCD作为码盘图像光电转换装置,并利用FPGA实现电路控制及译码算法。同时提出了新的译码算法,该算法一方面将CCD输出信号二值化后的电平信号高电平计数,判断组合得到粗码信息;另一方面应用质心法进行细分定位,通过计算条纹质心与虚拟中心的偏差得到细分角度值。最后,通过两者结合得到角度信息。基于该系统研制的经纬仪样机精度达到2。  相似文献   

19.
本文简要介绍了光栅莫尔条纹信号的产生及其测量原理,详细分析了莫尔条纹信号的放大整形,计数及数码显示电路。并且采用可编程逻辑器件GAL16V8实现莫尔条纹信号的四细分及辨向功能,极大地简化了电路,提高了系统的抗干扰能力。本设计主要是针对现有旧的长度/高度测试仪进行改造,实现其数字化显示,以及测量清零等周边功能,使用更方面,同时也提高了测量的精度。改变了原有只进行的定性检测(仅检测合格/不合格)的检测方法,实现了定量的检测与分析。通过实验结果可知,此系统可达到10μm的精度。  相似文献   

20.
24位绝对式光电编码器数据采集系统   总被引:3,自引:0,他引:3  
介绍了一种24位绝对式光电轴角编码器的数据采集系统.该编码器的原始信号经差分放大后一共有24路输出信号,采用三片A/D转换芯片MAX1316对编码器信号进行采集,信号采集的控制芯片采用TI公司型号为TMS320F2812的DSP处理器.DSP可以实时地处理编码器的信号,将电信号转换为编码器的位置信息,也可以通过USB接口将编码器的光电信号数据传送给计算机,以便对编码器的性能参数进行更为详细的分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号