共查询到19条相似文献,搜索用时 68 毫秒
1.
针对单幅低分辨率灰度图像,提出一种基于稀疏表示和字典学习的超分辨率重建算法,通过选择合适的过完备字典,图像块可表示为字典元素的稀疏线性组合。对于输入的低分辨率图像,寻求每一图像块的稀疏表示,利用此表示系数产生高分辨率图像输出。为消除Elad方法重建图像中产生的黑色边缘并提高重建图像的质量,文中在稀疏表示方法的基础上利用反向投影法对其进行改进。仿真实验结果表明,改进算法不仅实现了上述目的,而且在图像信噪比和算法运行效率上都有所提高,从而达到了算法改进的目的。 相似文献
2.
针对单幅低分辨率灰度图像,提出一种基于稀疏表示和字典学习的超分辨率重建算法,通过选择合适的过完备字典,图像块可表示为字典元素的稀疏线性组合。对于输入的低分辨率图像,寻求每一图像块的稀疏表示,利用此表示系数产生高分辨率图像输出。为消除Elad方法重建图像中产生的黑色边缘并提高重建图像的质量,文中在稀疏表示方法的基础上利用反向投影法对其进行改进。仿真实验结果表明,本文改进算法不仅实现了上述目的,而且在图像信噪比和算法运行效率上都有所提高,从而达到了算法改进的目的。 相似文献
3.
在医学影像图像处理过程中,由于成像技术和成像时间的限制,还无法获取满足诊断需求的清晰图像,这使得在现有技术和极短时间内所获取的医学病理图像需要进行超分辨率的重建处理;基于学习的图像超分辨率思想是从已建立的先验模型中重建出高频细节;在文章中,将要估计的高频信息认为是由主要高频和冗余高频两部分组成,提出了一种基于双字典学习和稀疏表示的医学图像超分辨率重建算法,由主要字典学习和冗余字典学习组成,分别渐近地恢复出主要高频细节和冗余高频细节;实验结果的数据分析和视觉效果显示,所提出双层递进方法能够恢复更多的图像细节且在性能指标上比现有的其他几种方法均有所提高。 相似文献
4.
稀疏字典编码的超分辨率重建 总被引:2,自引:0,他引:2
基于学习的超分辨率方法通常根据低分辨率图像从样本库中选取若干特征相似的匹配对象,再使用优化算法进行超分辨率估计,但其结果受匹配对象的质量限制,并且匹配特征一般只选择图像的几何结构信息,匹配准确性较低.提出了稀疏字典编码的超分辨率模型,将高、低分辨率图像特征块统一进行稀疏编码,建立高、低分辨率图像的稀疏关联,同步实现匹配搜索和优化估计,突破了上述方法的限制.应用形态分量分析法提取图像的特征数据,提高了特征匹配的准确性,并同步实现超分辨率重建和降噪功能.优化方法采用稀疏K-SVD算法以提高稀疏字典编码的计算速度.采用自然图像进行实验与其他基于学习的超分辨率算法相比,重建所得到的图像质量更优. 相似文献
5.
6.
为改善单帧退化图像的分辨率,提出一种改进的基于超完备字典的图像超分辨率稀疏重构算法。该算法主要在字典训练过程中引入联合训练的思想以确保高、低分辨率图像块在其对应的过完备字典上具有相同的表示系数,并在图像重建过程中,利用迭代反投影加强全局重建约束。实验表明,与现有的几类算法相比较,该算法的重建图像无论在峰值信噪比还是结构相似性上均有明显提高。并且可应用于单帧模糊图像的超分辨率重建,有效地提高了图像的分辨率。 相似文献
7.
基于学习的超分辨率方法通常根据低分辨率图像从样本库中选取若干特征相似的匹配对象,再使用优化算法进行超分辨率估计,但其结果受匹配对象的质量限制,并且匹配特征一般只选择图像的几何结构信息,匹配准确性较低。提出了稀疏字典编码的超分辨率模型,将高、低分辨率图像特征块统一进行稀疏编码,建立高、低分辨率图像的稀疏关联,同步实现匹配搜索和优化估计,突破了上述方法的限制。应用形态分量分析法提取图像的特征数据,提高了特征匹配的准确性,并同步实现超分辨率重建和降噪功能。优化方法采用稀疏K-SVD算法以提高稀疏字典编码的计算速度。采用自然图像进行实验,与其他基于学习的超分辨率算法相比,重建所得到的图像质量更优。 相似文献
8.
图像超分辨率技术一直是计算机视觉领域研究的热点,为提高图像重建速度与精度,提出了一种稀疏编码与神经网络相结合的图像超分辨率算法。首先利用前馈神经网络严格对应稀疏编码过程中的每个步骤,然后通过反向传播算法对稀疏编码的所有组成部分进行联合训练,得到最为精确的高分辨率图像。级联多个稀疏编码网络增加了算法的灵活性,并减少了伪影。 相似文献
9.
针对图像分辨率较低的问题,提出了一种基于四通道卷积稀疏编码的图像超分辨率重建方法。首先,该方法将输入图像依次翻转90°作为四通道的各自输入,通过低通滤波和梯度算子将输入图像分解成高频和低频部分;接着,分别利用卷积稀疏编码方法和三次插值方法对各通道低分辨率图像的高频部分和低频部分进行重建;最后,对四通道输出图像加权求均值获得重建的高分辨率图像。实验结果表明,所提方法比一些经典的超分辨率重建方法在峰值信噪比(PSNR)、结构相似度(SSIM)和抗噪性上具有更好的重建效果。所提方法不仅克服了重叠补丁破环图像补丁间一致性的缺陷,还提高了重建图像的细节轮廓,加强了重建图像的稳定性。 相似文献
10.
11.
12.
单幅图像超分辨率的目的是从一幅低分辨率的图像来重构出高分辨率的图像。基于稀疏表示和邻域嵌入的超分辨率图像重建方法使得重建图像质量有了极大的改善。但这些方法还很难应用到实际中,因为其重建图像的速度太慢或者需要调节复杂的参数。目前大多数的方法在图像重建的速度和质量两个方面很难有一个好的权衡。鉴于以上问题提出了一种基于线性回归的快速图像超分辨率重建算法,将稀疏表示和回归的方法有效地结合在一起。通过稀疏表示训练的字典,用一种新的方式将整个数据集划分为多个子空间,然后在每一类子空间中独立地学习高低分辨率图像之间的映射关系,最后通过选择相应的投影矩阵来重建出高分辨图像。实验结果表明,相比于其他方法,本文提出的算法无论在图像重建速度还是重建质量方面都取得了更好的超分辨率重建效果。 相似文献
13.
针对基于学习的超分辨率重建图像边缘锐度较好但伪影较明显的问题,提出一种改进的稀疏系数独立可调的超分算法以消除伪影。由于字典训练阶段高分辨率图像和低分辨率图像均已知,认为高维图像空间和低维图像空间对应的稀疏系数不同,故此阶段运用在线字典学习方法分开训练生成较精确的高分字典和低分字典;而在图像重建阶段低分图像已知而高分图像未知,认为两空间的稀疏系数是近似相同的。通过在这两个阶段设置不同的正则化参数,可独立地调整相应的稀疏系数以获得最好的超分效果。实验结果表明,目标高分图像峰值信噪比(PSNR)相比稀疏编码超分方法平均提高了0.45 dB,同时结构相似性(SSIM)指标增加了0.011。超分图像有效地抑制了伪影,并能够较好地恢复图像边缘锐度和纹理细节,提升了超分效果。 相似文献
14.
提出小波稀疏的MR图像重构的交替最小化方法,分析证明了这一方法的收敛性。利用半二次罚函数方法将小波稀疏的MR图像重构最优化问题分裂成两个子最优化问题:X-子问题和Y-子问题,通过对两个子问题的交替最小化得到原问题的最优解。利用1维软阈值收缩方法求解Y-子问题,利用Fourier变换的方法求解X-子问题解,进而给出原问题求解的分裂算法。利用Phantom图像和一些实际的MR图像与最新的算子分裂算法进行数值实验比较,其结果是交替最小化方法重构的图像的信噪比比算子分裂算法的高,而相对误差和CPU时间较低,从而表明交替最小化方法是稀疏MR图像重构的一种快速算法。 相似文献
15.
目的 基于学习的超分辨率重建由于引入了先验知识,可以更好地描述图像的细节部分,显著地增强图像的分辨率,改善图像的视觉效果。将超分辨率重建应用在素描人脸识别中,既可以增加人脸图像的质量也可以有效地提高识别精度。方法 首先利用特征脸算法根据素描图像合成人脸灰度图像,然后对合成的人脸图像利用稀疏表示进行超分辨率重建,最后利用主成分分析对重建前后的合成人脸分别进行识别。结果 在香港中文大学的素描人脸库(CUFS)上进行实验。经过超分辨率重建之后的人脸在眼睛等部位细节描述更好。同时,由于重建过程中引入了先验知识,重建之后的素描人脸识别率有提高。支持向量机算法得到的识别率由重建前的65%提高至66%,本文利用的主成分分析算法得到的识别率由重建前的87%提高至89%。结论 基于超分辨率重建的素描人脸识别算法可以有效地改善合成人脸图像的视觉效果并且提高素描人脸识别精度。 相似文献
16.
图像具有大量的局部结构相似区域,并且这种相似性可以在多个尺度上保持。基于这一特征,利用结构相似指标进行相似性匹配生成相似的低分辨率图像序列,从而把单幅图像的超分辨问题转化为图像序列超分辨问题来解决。文中提出了一种新的自适应的正则化方法,正则参数的选取使得目标函数存在全局最优解。最后证明了算法的收敛性。实验表明,该方法具有很好的复原效果。 相似文献
17.
全面综述了基于学习的单帧图像超分辨重建技术的研究与发展。基于学习的单帧图像超分辨重建借助机器学习技术,通过学习低分辨与高分辨图像之间的映射关系估计低分辨图像中丢失的高频细节,以获得边缘清晰、纹理细节丰富的高质量图像。根据超分辨重建过程中实例样本使用方式和学习算法的不同,已有基于学习的超分辨重建方法可分为五种类型,包括基于[k]近邻学习的方法、基于流形学习的方法、基于字典学习的方法、基于实例多线性回归的方法和基于深度学习的方法。对每类方法的主要思想和具有代表性的方法进行了详细介绍,对六种具有代表性的基于学习的超分辨重建方法的重建结果进行了比较和分析。最后,对基于学习的超分辨重建技术的未来发展趋势进行了展望。 相似文献
18.
Methods based on sparse coding have been successfully used in single-image super-resolution reconstruction. However, they tend to reconstruct incorrectly the edge structure and lose the difference among the image patches to be reconstructed. To overcome these problems, we propose a new approach based on global non-zero gradient penalty and non-local Laplacian sparse coding. Firstly, we assume that the high resolution image consists of two components: the edge component and the texture component. Secondly, we develop the global non-zero gradient penalty to reconstruct correctly the edge component and the non-local Laplacian sparse coding to preserve the difference among texture component patches to be reconstructed respectively. Finally, we develop a global and local optimization on the initial image, which is composed of the reconstructed edge component and texture component, to remove possible artifacts. Experimental results demonstrate that the proposed approach can achieve more competitive single-image super-resolution quality compared with other state-of-the-art methods. 相似文献
19.
针对传统基于稀疏字典对的超分辨率(SR)算法训练速度慢、字典质量差、特征匹配准确性低的缺点,提出一种基于改进稀疏编码的图像超分辨率算法。该算法使用自适应阈值的形态组成分析(MCA)方法提取图像特征,并采用主成分分析算法对训练集进行降维,提高特征提取的有效性,缩短字典训练时间,减少过拟合现象。在字典训练阶段,使用改进的稀疏K-奇异值分解(K-SVD)算法训练低分辨率字典,结合图像块的重叠关系求解高分辨率字典,增强字典的有效性和自适应能力,同时极大地提高了字典的训练速度。在Lab颜色空间对彩色图像进行重建,避免由于颜色通道相关性造成的重建图像质量下降。与传统方法相比,该算法重建图像质量和计算效率更优。 相似文献