首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The avian hippocampus plays a pivotal role in memory required for spatial navigation and food storing. Here we have examined synaptic transmission and plasticity within the hippocampal formation of the domestic chicken using an in vitro slice preparation. With the use of sharp microelectrodes we have shown that excitatory synaptic inputs in this structure are glutamatergic and activate both NMDA- and AMPA-type receptors on the postsynaptic membrane. In response to tetanic stimulation, the EPSP displayed a robust long-term potentiation (LTP) lasting >1 hr. This LTP was unaffected by blockade of NMDA receptors or chelation of postsynaptic calcium. Application of forskolin increased the EPSP and reduced paired-pulse facilitation (PPF), indicating an increase in release probability. In contrast, LTP was not associated with a change in the PPF ratio. Induction of LTP did not occlude the effects of forskolin. Thus, in contrast to NMDA receptor-independent LTP in the mammalian brain, LTP in the chicken hippocampus is not attributable to a change in the probability of transmitter release and does not require activation of adenylyl cyclase. These findings indicate that a novel form of synaptic plasticity might underlie learning in the avian hippocampus.  相似文献   

2.
We have previously demonstrated that intra-hippocampal injection of corticotrophin-releasing factor improved memory retention of an inhibitory avoidance learning in rats; while the electrophysiological effects corticotrophin-releasing factor produces on hippocampal neurons are largely uncharacterized. In the present study, we found that corticotrophin-releasing factor injected into the dentate gyrus of hippocampus produced a dose-dependent and long-lasting enhancement in synaptic efficacy of these neurons, as measured by an increase in the amplitude and slope of population excitatory postsynaptic potentials, as well as the amplitude of population spike. The onset of corticotrophin-releasing factor-induced potentiation was slow. It was observed approximately 40-60 min after corticotrophin-releasing factor administration and lasted for more than 5 h. This effect of corticotrophin-releasing factor was blocked by pretreatment with the cyclase-adenosine-3,5-monophosphate (cAMP) inhibitor Rp-adenosine-3,5-cyclic monophosphothiolate triethylamine (Rp-cAMPS) and partially blocked by the N-methyl-D-aspartate receptor antagonist MK-801. Further, pretreatment with corticotrophin-releasing factor receptor antagonist dose-dependently diminished tetanization-induced long-term potentiation, and corticotrophin-releasing factor and tetanic stimuli had an additive effect on hippocampal neuron excitation. Moreover, direct injection of corticotrophin-releasing factor increased cAMP level in the dentate gyrus. These results together suggest that corticotrophin-releasing factor-induced potentiation simulates the late phase of tetanization-induced long-term potentiation and cAMP seems to be the messenger mediating this effect. Moreover, corticotrophin-releasing factor-induced potentiation and long-term potentiation may share some similar mechanisms, and corticotrophin-releasing factor is probably involved in the neural circuits underlying long-term potentiation. Thus, corticotrophin-releasing factor may play an important role in modulating synaptic plasticity in the hippocampus.  相似文献   

3.
Previously we showed that delivering 900 pulses to the Schaffer collateral-CA1 pathway at 1-3 Hz causes a lasting depression of synaptic effectiveness that is input specific and dependent on NMDA receptor activation (Dudek and Bear, 1992a). Here we describe experiments aimed at further characterizing this homosynaptic long-term depression (LTD) and comparing it with long-term potentiation (LTP). To address the question of whether depressed synapses can still be potentiated and vice versa, LTP was saturated with repeated high-frequency tetani, and then LTD was induced with low-frequency stimulation (LFS). A second strong tetanus then restored the potentiation, indicating that the same synapses whose transmission had been depressed by LFS were capable of subsequently supporting potentiation. In a complementary experiment, LTD was induced first and then a strong high-frequency tetanus was delivered. We found that the resulting LTP achieved the same absolute magnitude as that observed in control slices that had received the high-frequency stimulation alone. Next, the postnatal development of LTD was investigated in slices prepared from rats at 6-35 d of age. The consequences of LFS were far more pronounced in slices from young rats. LTD following 900 pulses at 1 Hz measured -45 +/- 4% in CA1 of rats less than 2 weeks old as compared with -20 +/- 4 in animals at 5 weeks postnatal. It was also found that LTD precedes the developmental onset of LTP in CA1. Finally, we addressed the question of whether LTD could be saturated by repeated episodes of LFS in slices prepared from 3-week-old rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
BACKGROUND AND PURPOSE: Stroke-induced hemiparesis involving the arm and hand results in regular, repeated overuse of the opposite hand and wrist. Because repetitive hand and wrist movement is a common cause of carpal tunnel syndrome (CTS), we examined the nonparetic upper limb in stroke patients for evidence of CTS. METHODS: We measured bilaterally sensory nerve conduction velocity (SNCV), motor nerve conduction velocity (MNCV), sensory nerve action potentials (SNAP) at the wrist, palm-to-wrist distal sensory latency (DSL), palm-to-wrist SNAP, compound motor action potentials (CMAP), and distal motor latency (DML) in stroke patients and control subjects. Controls were right-handed, >/=65 years old, lucid, independent in their activities of daily living, and had no disease known to cause CTS. Stroke patients were divided into a functioning hand group (n=61) and a disused hand group (n=71). All patients had hemiplegia. RESULTS: Tinel's sign was observed on the nonparetic side in 57.7% of patients with a disused hand and in 31.1% of those with a functioning hand. All electrophysiological indices were significantly more abnormal on the nonparetic side than on the hemiparetic side or in controls. Patients with a disused hand showed greater abnormality on the nonparetic side in SNCV, SNAP, palm-to-wrist DSL, DML, and CMAP than patients with a functioning hand. CONCLUSIONS: Overuse of the nonparetic hand and wrist of the nonparetic side may result in CTS in stroke patients, especially when the paretic hand is not functional. Wrist splinting or other prophylactic treatments beginning soon after stroke might help to prevent CTS.  相似文献   

5.
In addition to the regulation of neuronal survival and differentiation, neurotrophins may play a role in synapse development and plasticity. Application of brain-derived neurotrophic factor (BDNF) promotes long-term potentiation (LTP) in CA1 synapses of neonatal hippocampus, which otherwise exhibit only short-term potentiation. This is attributable, at least in part, to an attenuation of the synaptic fatigue induced by high-frequency stimulation (HFS). However, the prevention of synaptic fatigue by BDNF could be mediated by an attenuation of synaptic vesicle depletion from presynaptic terminals and/or a reduction of the desensitization of postsynaptic receptors. Here we provide evidence supporting a presynaptic effect of BDNF. The effect of BDNF on synaptic fatigue depended on the stimulation frequency, not on the stimulus duration nor on the number of stimulation pulses. BDNF was only effective when the synapses were stimulated at frequencies >50 Hz. Treatment with BDNF also potentiated paired-pulse facilitation (PPF), a parameter reflecting changes in the properties of presynaptic terminals. This effect of BDNF was restricted only to PPF elicited with interpulse intervals 相似文献   

6.
To elucidate the mechanism underlying epileptiform discharges in kindled rats, synaptic responses in kindled basolateral amygdala neurons in vitro were compared with those from control rats by using intracellular and whole cell patch-clamp recordings. In kindled neurons, electrical stimulation of the stria terminalis induced epileptiform discharges. The resting potential, apparent input resistance, current-voltage relationship of the membrane, and the threshold, amplitude, and duration of action potentials in kindled neurons were not different from those in control neurons. The electrical stimulation of stria terminalis elicited excitatory postsynaptic potentials (EPSPs) and DL-2-amino-5-phosphonopentanoic acid (AP5)-sensitive and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive excitatory postsynaptic currents (EPSCs). The amplitude of evoked EPSPs and of evoked AP5-sensitive and CNQX-sensitive EPSCs were enhanced markedly, whereas fast and slow inhibitory postsynaptic potentials (IPSPs) induced by electrical stimulation of lateral amygdaloid nucleus were not significantly different. The rise time and the decay time constant of the evoked CNQX-sensitive EPSCs were shortened, whereas the rise time of the evoked AP5-sensitive EPSCs was shortened, but the decay time constants were not significantly different. In both tetrodotoxin (TTX)-containing medium and low Ca2+ and TTX-containing medium, the frequency and amplitude of spontaneous EPSCs were increased in kindled neurons. These increases are presumably due to nearly synchronous multiquantal events resulted from the increased probability of Glu release at the nerve terminals. The rise time of evoked CNQX- and AP5-sensitive EPSCs and the decay time constant of evoked CNQX-sensitive EPSCs were shortened, suggesting that excitatory synapses at the proximal dendrite and/or the soma in kindled neurons may contribute more effectively to generate evoked EPSCs than those at distal dendrites. In conclusion, the increases in the amplitudes of spontaneous and evoked EPSCs and in the frequency of spontaneous EPSCs may contribute to the epileptiform discharges in kindled neurons.  相似文献   

7.
The effect of L-deprenyl (selegiline) on the excitatory synaptic transmission was characterized in the CA1 neurons of rat hippocampal slices by using a intracellular recording technique. Superfusion of L-deprenyl (0.1-10 microM) reversibly decreased the EPSP, which was evoked by orthodromic stimulation of the Schaffer collateral-commissural afferent pathway in a concentration-dependent manner. The sensitivity of postsynaptic neurons to the glutamate receptor agonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid or N-methyl-D-aspartate, was not affected by L-deprenyl (1 microM) pretreatment. In addition, L-deprenyl (1 microM) clearly increased the magnitude of paired-pulse facilitation regardless of the interstimulus intervals of 20 to 300 msec used. The ability of L-deprenyl to decrease the EPSP amplitude was not observed in the dopamine-depleted rats. Pargyline and 4-phenylpyridine, the monoamine oxidase type B inhibitors, mimicked the depressant effect of L-deprenyl on the EPSP. Moreover, the reduction of L-deprenyl (1 microM) on the EPSP amplitude was specifically antagonized by sulpiride (0.01-0.1 microM), a selective dopamine D2 receptor antagonist. However, the dopamine D1 receptor antagonist, SKF-83566 (1-10 microM), did not significantly affect L-deprenyl's action. These results indicate that the monoamine oxidase type B inhibitory ability leading to an increase of the dopaminergic tonus in the hippocampus is involved in the L-deprenyl-induced depression of excitatory synaptic transmission in the CA1 region of the rat hippocampus. Moreover, application of L-deprenyl (1 and 10 microM) also reversibly suppressed the epileptiform activity evoked by picrotoxin.  相似文献   

8.
1. The depression of synaptic transmission by the specific metabotropic glutamate receptor (mGlu) agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylate ((1S,3R)-ACPD) was investigated in area CA1 of the hippocampus of 4-10 week old rats, by use of grease-gap and intracellular recording techniques. 2. In the presence of 1 mM Mg2+, (1S,3R)-ACPD was a weak synaptic depressant. In contrast, in the absence of added Mg2+, (1S,3R)-ACPD was much more effective in depressing both the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated components of synaptic transmission. At 100 microM, (1S,3R)-ACPD depressed the slope of the field excitatory postsynaptic potential (e.p.s.p.) by 96 +/- 1% (mean +/- s.e.mean; n = 7) compared with 23 +/- 4% in 1 mM Mg(2+)-containing medium (n = 17). 3. The depressant action of 100 microM (1S,3R)-ACPD in Mg(2+)-free medium was reduced from 96 +/- 1 to 46 +/- 6% (n = 7) by the specific NMDA receptor antagonist (R)-2-amino-5-phosphonopentanoate (AP5; 100 microM). 4. Blocking both components of GABA receptor-mediated synaptic transmission with picrotoxin (50 microM) and CGP 55845A (1 microM) in the presence of 1 mM Mg2+ also enhanced the depressant action of (1S,3R)-ACPD (100 microM) from 29 +/- 5 to 67 +/- 6% (n = 6). 5. The actions of (1S,3R)-ACPD, recorded in Mg(2+)-free medium, were antagonized by the mGlu antagonist (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG). Thus, depressions induced by 30 microM (1S,3R)-ACPD were reversed from 48 +/- 4 to 8 +/- 6% (n = 4) by 1 mM (+)-MCPG. 6. In Mg(2+)-free medium, a group I mGlu agonist, (RS)-3, 5-dihydroxyphenylglycine (DHPG; 100 microM) depressed synaptic responses by 74 +/- 2% (n = 18). In contrast, neither the group II agonists ((2S,1'S,2'S)-2-(2'-carboxycyclopropyl)glycine; L-CCG-1; 10 microM; n = 4) and ((2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine; DCG-IV; 100 nM; n = 3) nor the group III agonist ((S)-2-amino-4-phosphonobutanoic acid; L-AP4; 10 microM; n = 4) had any effect. 7. The depolarizing action of (1S,3R)-ACPD, recorded intracellularly, was similar in the presence and absence of Mg(2+)-AP5 did not affect the (1S,3R)-ACPD-induced depolarization in Mg(2+)-free medium. Thus, 50 microM (1S,3R)-ACPD induced depolarizations of 9 +/- 3 mV (n = 5), 10 +/- 2 mV (n = 4) and 8 +/- 2 mV (n = 5) in the three respective conditions. 8. On resetting the membrane potential in the presence of 50 microM (1S,3R)-ACPD to its initial level, the e.p.s.p. amplitude was enhanced by 8 +/- 3% in 1 mM Mg2+ (n = 5) compared with a depression of 37 +/- 11% in the absence of Mg2+ (n = 4). Addition of AP5 prevented the (1S,3R)-ACPD-induced depression of the e.p.s.p. (depression of 4 +/- 5% (n = 5)). 9. It is concluded that activation by group 1 mGlu agonists results in a depression of excitatory synaptic transmission in an NMDA receptor-dependent manner.  相似文献   

9.
The associative net model of heteroassociative memory with binary-valued synapses has been extended to include recent experimental data indicating that in the hippocampus, one form of synaptic modification is a change in the probability of synaptic transmission. Pattern pairs are stored in the net by a version of the Hebbian learning rule that changes the probability of transmission at synapses where the presynaptic and post-synaptic units are simultaneously active from a low, base value to a high, modified value. Numerical calculations of the expected recall response of this stochastic associative net have been used to assess the performance for different values of the base and modified probabilities. If there is a cost incurred with generating the difference between these probabilities, then a difference of about 0. 4 is optimal. This corresponds to the magnitude of change seen experimentally. Performance can be greatly enhanced by using multiple cue presentations during recall.  相似文献   

10.
Neurogenesis in the adult human hippocampus   总被引:6,自引:0,他引:6  
The genesis of new cells, including neurons, in the adult human brain has not yet been demonstrated. This study was undertaken to investigate whether neurogenesis occurs in the adult human brain, in regions previously identified as neurogenic in adult rodents and monkeys. Human brain tissue was obtained postmortem from patients who had been treated with the thymidine analog, bromodeoxyuridine (BrdU), that labels DNA during the S phase. Using immunofluorescent labeling for BrdU and for one of the neuronal markers, NeuN, calbindin or neuron specific enolase (NSE), we demonstrate that new neurons, as defined by these markers, are generated from dividing progenitor cells in the dentate gyrus of adult humans. Our results further indicate that the human hippocampus retains its ability to generate neurons throughout life.  相似文献   

11.
Evoked postsynaptic potentials of CA1 pyramidal neurons in rat hippocampus were studied during 48 h after severe ischemic insult using in vivo intracellular recording and staining techniques. Postischemic CA1 neurons displayed one of three distinct response patterns following contralateral commissural stimulation. At early recirculation times (0-12 h) approximately 50% of neurons exhibited, in addition to the initial excitatory postsynaptic potential, a late depolarizing postsynaptic potential lasting for more than 100 ms. Application of dizocilpine maleate reduced the amplitude of late depolarizing postsynaptic potential by 60%. Other CA1 neurons recorded in this interval failed to develop late depolarizing postsynaptic potentials but showed a modest blunting of initial excitatory postsynaptic potentials (non-late depolarizing postsynaptic potential neuron). The proportion of recorded neurons with late depolarizing postsynaptic potential characteristics increased to more than 70% during 13-24 h after reperfusion. Beyond 24 h reperfusion, approximately 20% of CA neurons exhibited very small excitatory postsynaptic potentials even with maximal stimulus intensity. The slope of the initial excitatory postsynaptic potentials in late depolarizing postsynaptic potential neurons increased to approximately 150% of control values up to 12 h after reperfusion indicating a prolonged enhancement of synaptic transmission. In contrast, the slope of the initial excitatory postsynaptic potentials in non-late depolarizing postsynaptic potential neurons decreased to less than 50% of preischemic values up to 24 h after reperfusion indicating a prolonged depression of synaptic transmission. More late depolarizing postsynaptic potential neurons were located in the medial portion of CA1 zone where neurons are more vulnerable to ischemia whereas more non-late depolarizing postsynaptic potential neurons were located in the lateral portion of CA1 zone where neurons are more resistant to ischemia. The result from the present study suggests that late depolarizing postsynaptic potential and small excitatory postsynaptic potential neurons may be irreversibly injured while non-late depolarizing postsynaptic potential neurons may be those that survive the ischemic insult. Alterations of synaptic transmission may be associated with the pathogenesis of postischemic neuronal injury.  相似文献   

12.
Long-term potentiation at CA3-CA1 hippocampal synapses exhibits an early phase and a late phase, which can be distinguished by their underlying molecular mechanisms. Unlike the early phase, the late phase is dependent on both cAMP and protein synthesis. Quantal analysis of unitary synaptic transmission between a single presynaptic CA3 neuron and a single postsynaptic CA1 neuron suggests that, under certain conditions, the early phase of LTP involves an increase in the probability of release of a single quantum of transmitter from a single presynaptic release site, with no change in the number of quanta that are released or in postsynaptic sensitivity to transmitter. Here, we show that the cAMP-induced late phase of LTP involves an increase in the number of quanta released in response to a single presynaptic action potential, possibly due to an increase in the number of sites of synaptic transmission between a single CA3 and a single CA1 neuron.  相似文献   

13.
Activation of ACPD-sensitive metabotropic receptors induced differential effects on synaptic transmission and the induction of LTP in CA1 and the dentate gyrus of the hippocampus i.c.v. injections of (1.S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD] induced enduring potentiation of the fEPSP in CA1, which occluded tetanically induced LTP. In contrast, ACPD induced a dose-dependent biphasic effect on the fEPSP in the dentate gyrus, consisting of an initial short lasting potentiation, followed by enduring depression of the response, and blockade of LTP. These two effects are likely to be mediated by two different classes of the receptor as in the dentate gyrus the selective class I agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG) induced sustained potentiation of the fEPSP, whereas the mixed mGluR2 agonist-mGluR1 antagonist, (S)-4-carboxy-3-hydrophenylglycine((S)-4C3H-PG) induced only depression. Increasing the concentration of calcium directly in the dentate gyrus prior to, and in conjunction with, injections of ACPD induced sustained potentiation rather than depression. The differential effects indicate that the second messenger cascades the subtypes of receptors are linked with, mediate different forms of synaptic plasticity within the hippocampus and have important implications for their role in learning.  相似文献   

14.
Dorsal root afferents form synaptic connections on motoneurons a few days after motoneuron clustering in the rat lumbar spinal cord, but frequent spontaneous synaptic potentials are detected only after birth. To increase our understanding of the mechanisms underlying the differentiation of synaptic transmission, we examined the developmental changes in properties of spontaneous synaptic transmission at early stages of synapse formation. Spontaneous postsynaptic currents (PSCs) and tetrodotoxin (TTX)-resistant miniature PSCs (mPSCs) were measured in spinal motoneurons of embryonic and postnatal rats using whole cell patch-clamp recordings. Spontaneous PSC frequencies were higher than mPSC frequencies in both embryonic and postnatal motoneurons, suggesting that even at embryonic stages, when action-potential firing rate was low, presynaptic action potentials played an important role in triggering spontaneous PSCs. After birth, the twofold increase in spontaneous PSC frequency was attributed to an increase in action-potential-independent quantal release rather than to a higher rate of action-potential firing. In embryonic motoneurons, the fluctuations in peak amplitude of spontaneous PSCs were normally distributed around single peaks with modal values similar to those of mPSCs. These data indicated that early in synapse differentiation spontaneous PSCs were primarily composed of currents generated by quantal release. After birth, mean mPSC amplitude increased by 50% but mean quantal current amplitude did not change. Synchronous, multiquantal release was apparent in postnatal motoneurons only in high-K+ extracellular solution. Comparison of the properties of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) demonstrated that mean mEPSC frequency was higher than mIPSC frequency, suggesting that either excitatory synapses outnumbered inhibitory synapses or that the probability of excitatory transmitter release was higher than the release of inhibitory neurotransmitters. The finding that mIPSC duration was several-fold longer than mEPSC duration implied that despite their lower frequency, inhibitory currents could modulate motoneuron synaptic integration by shunting incoming excitatory inputs for prolonged time intervals.  相似文献   

15.
We examined the functionality of hippocampal CA1 neurons at early times after transient global ischemia, by electrophysiologic recordings in brain slices. Transient ischemia was conducted on rats using the method of 15-minute four-vessel occlusion, and brain slices were obtained from these animals at different times after ischemia. Within 24 hours after insult, CA1 neurons showed no substantial damage as identified by morphologic means, but exhibited dramatic decreases in synaptic activities by 12 hours after insult, which became further decreased at more extended times after recovery. Blocking gamma-aminobutyric acid A (GABAA) receptors with bicuculline produced a reversible augmentation of the diminished synaptic responses in slices prepared from 12-hour postinsult animals, but failed to do so in slices obtained from rats 24 hours after insult. Recorded in whole-cell mode, the minimum depolarizing current required to elicit an action potential was about twofold larger in the ischemic CA1 neurons than in sham controls, suggesting that an elevated spiking threshold exists in these neurons. We suggest that decreases in electrophysiologic activities precede the morphologic deterioration in postischemic CA1 neurons. The early decrease in CA1 synaptic activities may be associated with an imbalance between glutamate-mediated synaptic excitation and GABAA-mediated synaptic inhibition, whereas substantial impairments in synaptic transmission likely take place after prolonged post-ischemic recovery.  相似文献   

16.
Chronic epilepsy is associated with increased excitability which may result from abnormal glutamatergic synaptic transmission involving altered properties of N-methyl-D-aspartate (NMDA) receptors. To date two gene families encoding NMDA receptor subunits have been cloned, NR1 and NR2. Eight NR1 mRNAs are generated by alternative splicing of exons 5, 21 and 22; the NR1-1 to NR1-4 C-terminal variants exist in the a or b version depending on the presence or absence of the domain encoded by exon 5. Epilepsy was induced in rats by unilateral intra-amygdalar injection of kainate and animals were killed from 6 h to 4 months following the injection. Increased NR1 mRNA levels were observed during status epilepticus (6-24 h after the injection), both psilateral and contralateral, while a second wave of NMDAR1 mRNA increase occurred in chronic epileptic animals, between 21 days and 4 months following kainate injection. Our data show: (i) a permanent increase of the NR1-2a and NR1-2b mRNA species (containing exon 22) in all hippocampal fields, both ipsilateral and contralateral, and (ii) an increase of the NR1-3 (a and b) mRNAs (containing exon 21) in the ipsilateral CA1, and NR1-3a mRNA in the ipsilateral dentate gyrus. No long-term changes were observed for the NR1-1 and NR14 splice variants. In the ipsilateral CA3 area a globally decreased mRNA expression was associated with neuronal loss. A possible contribution to the maintenance of the epileptic state by an increased expression of NMDA receptors is discussed.  相似文献   

17.
18.
The properties of central ATP-mediated synaptic currents were studied using whole-cell patch-clamp recording in rat medial habenula slices. Release was shown to be calcium dependent with a Hill coefficient of approximately 2. The voltage dependence of synaptic current amplitudes was approximately linear. Some reduction of the synaptic current amplitudes was observed at 10 mM extracellular calcium, suggesting calcium block/permeability of the channels. This was confirmed by observation of current-voltage reversal potentials in different calcium concentrations. We estimate that the channels underlying half the synapses showed a negligible calcium permeability. In the other four out of eight synapses the results suggest a very high calcium permeability with an estimated PCa/PCs of > 10. Thus, at -70 mV, in 1 mM calcium, more than 15% of the ATP-mediated synaptic current is estimated to be carried by calcium, but only at synapses with calcium-permeable channels. Net current through these synaptic channels is also controlled by the voltage dependence of synaptic current decay time constants (increasing e-fold for 158 mV depolarization) and by a strong dependence of transmitter release on the frequency of stimulation of the presynaptic neurone, with failure rates increasing 3-fold as stimulation rates were increased from 1 to 10 Hz.  相似文献   

19.
20.
Glutamate, the major excitatory neurotransmitter in the central nervous system, activates three different receptors that directly gate ion channels, namely receptors for AMPA (alpha-amino-3-hydroxy-5-methyl isoxozole propionic acid), NMDA (N-methyl-D-aspartate), and kainate, a structural analogue of glutamate. The contribution of AMPA and NMDA receptors to synaptic transmission and plasticity is well established. Recent work on the physiological function of kainate receptors has focused on the hippocampus, where repetitive activation of the mossy-fibre pathway generates a slow, kainate-receptor-mediated excitatory postsynaptic current (EPSC). Here we show that high-intensity single-shock stimulation (of duration 200 microseconds) of primary afferent sensory fibres produces a fast, kainate-receptor-mediated EPSC in the superficial dorsal horn of the spinal cord. Activation of low-threshold afferent fibres generates typical AMPA-receptor-mediated EPSCs only, indicating that kainate receptors may be restricted to synapses formed by high-threshold nociceptive (pain-sensing) and thermoreceptive primary afferent fibres. Consistent with this possibility, kainate-receptor-mediated EPSCs are blocked by the analgesic mu-opiate-receptor agonist Damgo and spinal blockade of both kainate and AMPA receptors produces antinociception. Thus, spinal kainate receptors contribute to transmission of somatosensory inputs from the periphery to the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号