首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different pre-treatment methods were applied on two different anaerobic sludge cultures and their mixtures in order to investigate the effects of pre-treatment methods on bio-hydrogen production from dark fermentation of waste ground wheat solution. Repeated heat, chloroform and combinations of heat and chloroform pre-treatment methods were applied to anaerobic sludges from different sources. Repeated heat treatment (2 × 5 h) was found to be more effective in selecting hydrogen producing bacteria compared to the other treatment methods tested on the basis of cumulative hydrogen production. The highest hydrogen formation (652 ml) and specific hydrogen production rate (SHPR = 25.7 ml H2 g−1 cells h−1) were obtained with the anaerobic sludge pre-treated by repeated boiling. Both the type of anaerobic sludge and the pre-treatment method had considerable effects on bio-hydrogen production from wheat powder solution (WPS) by dark fermentation.  相似文献   

2.
The use of Ca(OH)2 pre-treatment to improve fermentative biohydrogen yields, from wheat straw was investigated. Wheat straw was pre-treated with 7.4% (w/w) Ca(OH)2 at ambient temperature (20 °C) for 2, 5, 8, and 12 days, prior to 35 °C fermentation with sewage sludge inoculum. Biohydrogen yields were evaluated during dark fermentation and simultaneous saccharification fermentation (SSF) of total pre-treated straw material and compared to those from separated solid and hydrolysate fractions. Ca(OH)2 pre-treatment followed by SSF, exhibited a synergetic relationship. On average, 58.78 mL-H2 g-VS−1 was produced from SSF of pre-treated and filtered solids. This was accompanied by approximately a 10-fold increase in volatile fatty acid production, compared to the untreated control. By omitting pre-treatment hydrolysate liquors from SSF, H2 production increased on average by 35.8%, per VS of harvested straw. Additional inhibition studies indicated that CaCO3, formed as a result of pre-treatment pH control, could promote homoacetogenesis and reduce biohydrogen yields.  相似文献   

3.
Hydrogen (H2) production by dark fermentation can be performed from a wide variety of microbial inoculum sources, which are generally pre-treated to eliminate the activity of H2-consuming species and/or enrich the microbial community with H2-producing bacteria. This paper aims to study the impact of the microbial inoculum source on pre-treatment behavior, with a special focus on microbial community changes. Two inocula (aerobic and anaerobic sludge) and two pre-treatments (aeration and heat shock) were investigated using glycerol as substrate during a continuous operation. Our results show that the inoculum source significantly affected the pre-treatment efficiency. In aerobic sludge no pre-treatment is necessary, while in anaerobic sludge the heat pre-treatment increased H2 production but aeration caused unstable H2 production. In addition, biokinetic control was key in Clostridium selection as dominant species in all microbial communities. Lower and unstable H2 production were associated with a higher relative abundance of Enterobacteriaceae family members. Our results allow a better understanding of H2 production in continuous systems and how the microbial community is affected. This provides key information for efficient selection of operating conditions for future applications.  相似文献   

4.
Effects of anaerobic pre-treatment were evaluated on the dewatered-sewage sludge from a municipal wastewater treatment plant in order to improve its biodegradability through anaerobic digestion. The pre-treatment was conducted in laboratory scale at 25, 50 and 70 °C for an incubation time of two days. As a reference, sludge sample was also autoclaved at 121 °C for 20 min to determine the thermal effect to the subsequent sludge digestion. Characteristics of dewatered-sludge such as viscosity, pH and soluble chemical oxygen demand (SCOD) were affected by the pre-treatment. A higher SCOD after the pre-treatment did not necessarily imply an increase in methane yield, although initial biodegradability rate was improved. In fact, a ‘great’ improvement in SCOD concentration (up to 27%) was translated in only 8% increase in the methane yield (298 ± 9 and 276 ± 6 Nml CH4 gVSadded?1 for pre-treated and untreated samples, respectively). Increasing the anaerobic pre-treatment time from 12 h to 2 days at 50 °C led to an 11% improvement in methane yield. Methane content in biogas increased from an average of 65–69% for the pre-treated and untreated substrates, respectively. Volatile solids (VS) reduction increased from 42% to 51%. The overall digestion time was not affected by the pre-treatment but 90% of methane was produced in the first 12 days of incubation for 50 °C pre-treated samples whereas it took 2–5 days more for 25, 70 °C pre-treated and untreated sludge samples. In this study, thermophilic digestion was also found to be a better option in terms of faster digestion and higher VS-reduction, but it showed lower methane yield as compared to mesophilic digestion, i.e. 9% and 11% increment in methane yields for thermophilic and mesophilic digestions, respectively.  相似文献   

5.
Six digested sludges, pre-treated by different methods (heat-shock, aeration, acid and base treatments, 2-bromoethanesulfonic acid (BESA) inhibition and iodopropane inhibition) as well as an untreated sample were compared for their suitability in the preparation of hydrogen producing seeds by cultivations in a sucrose medium. The heat-shock and acid treatment methods completely repressed methanogenic activity; however, they also partially repressed hydrogen production. The base treatment option did not completely repress methanogenic activity and also significantly impacted hydrogen production. The aeration method was unsuccessful at completely repressing methanogenic activity; however, it did not significantly affect the hydrogen production activity. The BESA and iodopropane pre-treatment methods specifically inhibited the methanogens, and there were no significant effects found on hydrogen production. Similar to the aeration pre-treated digested sludge sample, the untreated sludge showed high hydrogen production activity and a small amount of methanogenic activity (lower than the activity detected in the base treatment sample). In the subsequent second-step batch cultivations with the same sucrose medium and the diluted media, methanogenic activity was not detected in any of the test bottles. The microbial seed prepared from base treatment exhibited the highest hydrogen production activity, whereas those prepared from acid treatment did not exhibit any activity. Again, the microbial seed prepared from untreated sludge also exhibited relatively high hydrogen producing activity. A lower pH was detected at the end of the cultivation in all the test bottles. Interestingly, the variations in pH in the different tests bottles indicate that pH is an important parameter in the control of methanogenic activity.  相似文献   

6.
Algal bloom biomass, sourced from a freshwater lake in Chongqing, was pre-treated by hydrothermal pre-treatments with or without acid/alkali catalysts, and subsequently used as a substrate for sustainable biohythane production via fermentation. Fourier transform infrared (FTIR) spectroscopy analyses suggested hydrothermal acid/alkali pre-treatments significantly changed peak intensities of chemical compositions in algal bloom biomass. Derivative thermogravimetric (DTG) analyses showed more macromolecular substances hydrolysed after hydrothermal acid/alkali pre-treatments. When bloom algae were pre-treated with 1% HCl at 140 °C for 10 min, an optimal specific hydrogen yield (SHY) of 39.4 mL/g volatile solid (VS) was obtained, which is 38.2% higher than raw biomass. However, a 34.4% decrease in SHY occurred under hydrothermal pre-treatment with 1% NaOH due to the enhancement of Maillard reaction. When using the effluents in methane fermentation, specific methane yields (SMYs) were 177.1–276.8 mL/g VS. Two-stage process effectively reduced the total fermentation time by 22.7% compared with single-stage fermentation.  相似文献   

7.
Waste generation, waste management, sustainable energy production, and global warming are interrelated environmental issues to be considered together. Wastewater treatment sludge is an organic substance rich waste which causes significant environmental problems. However, these wastes can be used as raw material in biofuel generation. This study was designed to investigate the possible utilization of waste sludge in biohydrogen production by taking these facts into consideration. For this purpose, the sludge was first pre-treated with acid and then, the solid (sludge) and liquid (filtrate) phases of acid pre-treated sludge were used as the substrates for biohydrogen generation dark fermentation. Two-factor factorial experimental design method was used in acid hydrolysis of sludge to determine the effect of pH (pH = 2–6) and reaction period (time, min) elution of chemical oxygen demand (COD), total organic carbon (TOC) and total sugar (TS), NH4N and PO4P. Statistical evaluation of the results indicated that pH significantly affects the elution of organic carbon and nutrient content of sludge while the reaction time is significant for only organic carbon content. The optimum pretreatment conditions for maximum organic and nutrient elution were determined as pH = 2 and t = 1440 min. The pretreated products, named as filtrate sludge and sludge, conducted to dark fermentation under mesophilic conditions for biohydrogen generation showed that pretreatment of waste sludge at pH = 6 is the best condition giving the maximum yields (YH2) as YH2 = 24 mmol g−1 Total Sugar consumed and YH2 = 41 mmol g−1 Total sugar consumed, for filtrate and sludge, respectively.  相似文献   

8.
Paper mill sludge (PMS) is a residual biomass that is generated at paper mills in large quantities. Currently, PMS is commonly disposed in landfills, which causes environmental issues through chemical leaching and greenhouse gas production. In this research, we are exploring the potential of fast pyrolysis process for converting PMS into useful bio-oil and biochar products. We demonstrate that by subjecting PMS to a combination of acid hydrolysis and torrefaction pre-treatment processes it is possible to alter the physicochemical properties and composition of the feedstock material. Fast pyrolysis of pretreated PMS produced bio-oil with significantly higher selectivity to levoglucosenone and significantly reduced the amount of ketone, aldehyde, and organic acid components. Pretreatment of PMS with combined 4% mass fraction phosphoric acid hydrolysis and 220 °C torrefaction processed prior to fast pyrolysis resulted in a 17 times increase of relative selectivity towards levoglucosenone in bio-oil product along with a reduction of acids, ketones, and aldehydes combined from 21 % to 11 %. Biochar, produced in higher yield, has characteristics that potentially make the solid byproduct ideal for soil amendment agent or sorbent material. This work reveals a promising process system to convert PMS waste into useful bio-based products. More in-depth research is required to gather more data information for assessing the economic and sustainability aspects of the process.  相似文献   

9.
鉴于强化污泥水解对于改善厌氧产酸效果的重要作用,在分析介质阻挡放电(DBD)、过一硫酸盐(PMS)单独破解污泥的反应参数及结果后,将两者进行联合,探讨联合反应后污泥水解及厌氧产酸效果的变化。结果表明,DBD放电或PMS单独处理对于污泥水解效果有限,当两者联合后,污泥的水解效果显著提高,说明PMS能被放电活化从而产生协同作用,其最佳反应条件为放电电压11kV、频率10kHz、时间20min、PMS投加量n(HSO_5~-)=1.0mmol/gTS;HO·、SO_4~-·为参与反应的重要活性物质;剩余污泥经预处理后能显著提高厌氧发酵系统中挥发酸的产量,并促进多碳酸向乙酸转化。  相似文献   

10.
厨余和污泥不同混合比例碱处理产氢特性研究   总被引:1,自引:0,他引:1  
以厨余垃圾和污泥为反应底物,加热预处理的污泥为发酵接种物,考察了碱处理下厨余与污泥不同混合比例的发酵产氢特性。结果表明:不同pH碱液对厨余垃圾进行预处理后,其效果以pH=13时最佳,预处理3h后SCOD和还原糖含量分别为31316.8mg/L和5.54mg/mL;碱预处理后的污泥与厨余联合发酵能够改善物料的营养平衡,缩短反应延迟时间到1h内;当厨余与污泥混和比例为5:1时为本试验最佳的试验条件,其氢气含量、比产氢速率峰值和氢产率分别为52.69%,1.73mL H_2/(h·gVS)和50.27mL H_2/gVS。  相似文献   

11.
The objective of the research was to investigate the effect of biomass loading, acid concentration and pre-treatment time on the yield of sugars obtained after acid pre-treatment and enzymatic hydrolysis of oilseed rape (OSR) straw. The highest concentration of glucose (313.4 ± 7.53 mg g?1 biomass) extracted after hydrolysis was achieved when OSR straw was pre-treated for 90 min; a glucan conversion efficiency of 81%. The highest concentration of sugars extracted immediately after pre-treatment was achieved with a pre-treatment time of 60 min. Pre-treatment energy efficiency in terms of total yield of sugars per MJ of energy consumed was higher when OSR straw was pre-treated for 60 min compared to 90 min even though the conversion of sugar extracted was lower at 60 min.  相似文献   

12.
A novel bioprocess design to convert paper mill sludge (PMS) to biofuels is proposed in this work. The design utilizes cellulosic fiber recovered from the PMS via optimized de-ashing (HCl washing) step. This work specifically provided a technical and economic analysis of paper mill sludge conversion into biofuel production using a novel protocol. The protocol is based on scanning electron microscopy (SEM) analysis to assess the quality of the contained cellulose prior to further processing. The results are crucially important to determine the suitability of the PMS feedstock to produce biofuels. SEM analysis was employed as a preliminary screening tool to evaluate sludge digestibility and conversion. The SEM characterization technique established a direct relationship between the fiber morphology, presence of crystals salts and sugar yield after enzymatic hydrolysis. Substantial structural changes were observed before and after de-ashing the sludge samples, leading to a correlation between the surface morphology and the washing step. The results suggested that de-ashing changes the surface morphology and upon analysis, increased the sugar yield up to about 86% as opposed to 2.2% in sludge sample A as an example. The PMS conversion into biofuel was simulated using Aspen PLUS and compared to a similar process using corn stover as feedstock. The simulation results showed it is 20% cheaper to produce bioethanol from PMS compared to corn stover. The simulation revealed less energy demand by around 13 320 MJ/h compared to that when corn stover was used.  相似文献   

13.
The pretreatment of digested sludge by different methods, including ionizing irradiation, heat-shock, acid and base, was performed for enriching hydrogen-producing bacteria. These methods were evaluated and compared based on their suitability in the enrichment of hydrogen-producing bacteria in dark fermentation with glucose as a substrate in batch tests. The experimental results showed that the seed sludge pretreated by ionizing irradiation achieved the best hydrogen production among the different pretreatment methods, and the maximum hydrogen production potential, maximum hydrogen production rate, hydrogen yield and substrate degradation rate were 525.6 mL, 37.2 mL/h, 267.7 mL/g glucose (2.15 mol/mol glucose) and 98.9%, respectively. Ionizing irradiation can be a good optional pretreatment method for enriching hydrogen-producing bacteria from digested sludge. The effect of ionizing irradiation on the microbial community structure dynamics of the pretreated sludge deserves further study, which will help us to understand the mechanisms leading to the effect of high bio-hydrogen production.  相似文献   

14.
Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp.A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3–24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H2/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess.  相似文献   

15.
The electrogenic bacterial consortia enrichment in the anodic chamber play a crucial role in determining the efficiency of microbial fuel cell (MFC). In order to use mix anaerobic culture enriched with active electrogenic species as inoculum, suppression of methanogens is important. This investigation focuses on potential of extracts of Azadirachta indica (Neem) leaves and Allium sativum (Garlic) peels in inhibiting activity of methanogenic microorganisms in the mixed anaerobic sludge. Specific methane yields of sludge treated with neem leaves extract, garlic peel extract and untreated sludge were found to be 0.068 ± 0.08 L CH4/g VSS.d, 0.073 ± 0.08 L CH4/g VSS.d, and 0.193 ± 0.08 L CH4/g VSS.d, respectively. However, the MFC operated with these pre-treated inoculums gave respective power densities of 5.6 W/m3, 5.0 W/m3, and 2.65 W/m3, respectively. Hence, it can be inferred that pre-treatment of mixed anaerobic sludge using neem leaves and garlic peels extract can be effective in enhancing power produced from MFCs.  相似文献   

16.
The two-stage hydrogen–methane fermentation process with different patterns of recirculation was investigated. Operations with the circulation of heat-treated sludge performed considerably better than those with the recirculation of raw sludge with respect to both the hydrogen production rate and yield. In addition, the results of the batch tests demonstrated that circulated sludge was capable of consuming hydrogen under acidogenic pH while the heat-treated sludge was not. These results suggest that the recirculation of active methanogenic sludge had an inhibitive effect on the hydrogen production, which can likely be attributed to the high hydrogen-consuming activity of microorganisms present in the circulated sludge. On the other hand, operations without any sludge recirculation did not perform well in terms of hydrogen production or carbohydrates degradation compared to those with recirculation, perhaps due to a shortage of available nitrogen. This suggests that sludge recirculation in effect supplemented the NH4+ in the hydrogen reactor.  相似文献   

17.
Supercritical water gasification (SCWG) is a method by which biomass can be converted into a hydrogen-rich gas product. Wet industrial waste streams, which contain both organic and inorganic material, are well suited for treatment by SCWG. In this study, the gasification of two streams of biomass resulting from the pulp and paper industry, black liquor and paper sludge, has been investigated. The purpose is to convert these to useful products, both gaseous and solids, which can be used either in the papermaking process or in external applications. Simple compounds, such as glucose, have been fully gasified in SCWG, but gasification of more complex compounds, such as biomass and waste, have not reached as high conversions. The investigated paper sludge was not easily gasified. Improving gasification results with catalysts is an option and the use of alkali salts for this purpose was studied. The relationship between alkali concentration, temperature, and gasification yields was studied with the addition of KOH, K2CO3, NaOH and black liquor to the paper sludge. Addition of black liquor to the paper sludge resulted in similarly enhancing effects as when the alkali salts were added, which made it possible to raise the dry matter content and gasification yield without expensive additives.  相似文献   

18.
This study optimizes a novel surfactant-assisted green liquor dregs (GLD) pretreatment of paper mill sludge (PMS), both of which are wastes from the kraft pulping industry, using a combined Response Surface Methodology (RSM) design. Optimized conditions give a maximal reducing sugar release of 16.38 g/L. A substantial reduction in heavy metals aluminum, chromium, cobalt, arsenic, lead, and copper after pretreatment illustrates the enhancement of substrate digestibility by reducing toxic elements. Separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) for hydrogen production are assessed. SSF produced a hydrogen yield of 3.72 mL/g, displaying a 36.26% increase from pretreated PMS compared to SHF. These findings provide insights into possible methods of reducing process duration, energy input, and costs incurred with waste disposal within the paper industry. Furthermore, improved hydrogen yield using an SSF process demonstrates the potential beneficiation of pulp and paper GLD and PMS wastes.  相似文献   

19.
A functional hydrogen producing consortium was isolated from soil by heat pre-treatment technique and hydrogen production at different substrate concentration was evaluated. The forest soil was heat pre-treated at 65, 80, 95, 105 and 120 °C temperature for 1 h. As revealed by PCR-DGGE analysis and hydrogen yield, the hydrogen producing microbial community changed with increase in heat pre-treatment temperatures giving potential hydrogen producing consortium at 95–105 °C soil pre-treatment. The maximum hydrogen production rate, hydrogen yield and cumulative hydrogen with 15–20 g glucose were 1390–1576 mL/L/day, 1.83–1.93 mol H2/mol glucose, and 2966–3146 mL H2/L, respectively. The metabolic pathways shifted from ethanol-type to acetate–formate type as soil pre-treatment temperature increased from 65 to 120 °C. The soil heat pre-treatment approach is effective for isolating hydrogen producing natural Clostridium consortium from the soil as enumerations of the functional strains need specific temperature range to florish.  相似文献   

20.
In the present study, mesophilic CH4 production from grass silage in a one-stage process was compared with the combined thermophilic H2 and mesophilic CH4 production in a two-stage process. In addition, solid and liquid fractions separated from NaOH pre-treated grass silage were also used as substrates. Results showed that higher CH4 yield was obtained from grass silage in a two-stage process (467 ml g−1 volatile solids (VS)original) compared with a one-stage process (431 ml g−1 VSoriginal). Similarly, CH4 yield from solid fraction increased from 252 to 413 ml g−1 VSoriginal whereas CH4 yield from liquid fraction decreased from 82 to 60 ml g−1 VSoriginal in a two-stage compared to a one-stage process. NaOH pre-treatment increased combined H2 yield by 15% (from 5.54 to 6.46 ml g−1 VSoriginal). In contrast, NaOH pre-treatment decreased the combined CH4 yield by 23%. Compared to the energy value of CH4 yield obtained, the energy value of H2 yield remained low. According to this study, highest CH4 yield (495 ml g−1 VSoriginal) could be obtained, if grass silage was first pre-treated with NaOH, and the separated solid fraction was digested in a two-stage (thermophilic H2 and mesophilic CH4) process while the liquid fraction could be treated directly in a one-stage CH4 process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号