首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni-based catalysts were synthesized in water, methanol and ethanol solvents by chemical reduction with sodium borohydride (NaBH4). The obtained catalyst for the first time was used to catalyze the NaBH4 hydrolysis reaction with phosphoric acid and acetic acid including different concentrations. The maximum hydrogen production rates obtained in the hydrolysis reaction including 0.5 M phosphoric acid and 0.1 M acetic acid of the Ni-based catalyst prepared in ethanol solvent were 5214 and 3650 ml g?1 min?1, respectively.  相似文献   

2.
The methanol and water solvents were used for the production of hydrogen from potassium borohydride. In addition, phosphoric acid was selected as the green catalyst so that this semi-methanolysis reaction would be more effective for the first time. The semi-methanolysis of potassium borohydride is investigated depend on potassium borohydride, phosphoric acid concentrations and temperatures. The maximum normalized hydrogen production rate obtained from this semi-methanolysis reaction with 1 M phosphoric acid as a catalyst was 5779 ml min ?1 g?1. In addition, this semi-methanolysis reaction was completed in 5 s. Kinetic studies have been carried out with the power law kinetic model. The activation energy obtained for this semi-methanolysis reaction is 1.45 kJ mol?1.  相似文献   

3.
Numerous catalysts have been widely investigated for accelerating hydrogen production from NaBH4 hydrolysis. However, these catalysts are usually complicated in structures, costly in fabrication, and hazardous for environment. In this work, cheap and environment-friendly acetic acid, CH3COOH, is employed to promote NaBH4 hydrolysis to produce hydrogen in a considerable rate. The experimental results demonstrate that the addition of suitable amount of CH3COOH into NaBH4 solutions stabilized with NaOH could dramatically accelerate the hydrolysis reaction. Additionally, the start/stop of NaBH4 hydrolysis could be controlled by adding acid or base into the solution to realize “go-as-you-please” on-site hydrogen production.  相似文献   

4.
In this study, montmorillonite (MMT) clay was modified with different acids to be used as support material. The modified MMT clay was used to obtain hydrogen in the hydrolysis reactions of NaBH4 (NaBH4-HR) as a support material for the Co–B and Co–Fe–B catalyst. During the activation of MMT clay, the effects of different acids, phosphoric acid (H3PO4) concentration, and impregnation time with H3PO4 were investigated. During the hydrogen generation from the NaBH4-HR, effects of Co loading, Fe loading, NaBH4 concentration, temperature and, catalyst durability were investigated. The maximum HGRs for MMT-H3PO4–CoB and MMT-H3PO4–Co–Fe–B treated with 5 M H3PO4 for 7 days were 1869 and 4536 mL/min/gcatalyst, respectively. The activation energies for MMT-H3PO4–CoB and MMT-H3PO4–Co–Fe–B catalyst samples were 49.5 and 38.90 kJ/mol.  相似文献   

5.
Cu/CuCr2O4 catalysts were prepared by impregnation method at various calcination temperatures (300, 400, and 500 °C) and then reduced in H2 stream. The aggregated particles and decreasing surface area/pore volumes of the deactivated catalysts during HCOOH and CH3OH formations were also observed. Particularly, the EXAFS data showed that first shells of Cu atoms transforms from Cu–O to Cu–Cu after catalytic reactions, their bond distances and coordination numbers are quite different, respectively. It revealed that metallic Cu atoms are one of the important active species over catalyst surface at different reaction temperatures having many unoccupied binding sites for HCOOH and CH3OH formations. Additionally, the optimal calcination temperature for Cu/CuCr2O4 catalysts was demonstrated at 400 °C that attributed to its strongest acidity and basicity. The catalytic reactions in the duration of HCOOH and CH3OH preparation were proposed that were composed of HCOOH formation, CH3OH formation, and CH3OH decomposition happening at CuCr2O4, Cu, and CuO active sites, respectively. The highest CO2 conversion (14.6%), HCOOH selectivity/yield (87.8/12.8%), and TON/TOF values (4.19/0.84) were obtained at 140 °C and 30 bar in 5 h, respectively. Optimal rate constant (2.57 × 10?2 min?1) and activation energy (16.24 kJ mol?1) of HCOOH formation were evaluated by pseudo first-order model and Arrhenius equation, respectively.  相似文献   

6.
Electrodeposition was used to deposit cobalt over polycarbonate membrane (PCM), which was used as stable supported catalyst in hydrolysis of sodium borohydride NaBH4. We selected PCM as support owing to its lightness, easy handling, stability, and porous structure with nanosized channels. Our primary objective was to obtain a catalytic film resistant to both physical degradation and delamination while H2 bubbled on its surface. A thin film consisting of mushroom-like cobalt nanoarchitectures were prepared. By SEM, we observed that it is strongly embedded into the PCM thickness, with the anchoring occurring through the channels. This shaped catalyst was mechanically stable and did not show degradation during the reaction. The main results are reported and discussed in details herein.  相似文献   

7.
In this study, the Ni-based complex catalyst containing nickel of 1% supported on Al2O3 is used as for the hydrogen production from NaBH4 hydrolysis. The maximum hydrogen production rate from hydrolysis of NaBH4 with Ni-based complex catalyst supported on Al2O3 containing nickel of 1% is 62535 ml min?1 g?1 (complex catalyst containing 1 wt% Ni). The resulting complex catalyst is characterised by XRD, XPS, SEM, FT-IR, UV, and BET surface area analyses. The Arrhenius activation energy is found to be 27.29 kJ mol?1 for the nickel-based complex catalyst supported on Al2O3. The reusability of the catalyst used in this study has also been investigated. The Ni-based complex catalyst supported on Al2O3 containing nickel of 1% is maintained the activity of 100% after the fifth use, compared to the first catalytic use. The n value for the reaction rate order of NaBH4 is found to be about 0.33.  相似文献   

8.
In this paper we report the effect of extrinsic lactic acid on hydrogen production from a starch-containing medium by a mixed culture. Study of the effect of addition of four metabolites, namely ethanol, lactic acid, butyric acid and acetic acid illustrated that lactic acid had a positive effect on both the maximum hydrogen production and hydrogen production rate. The addition of 10 mM lactic acid to a batch containing starch increased the hydrogen production rate and hydrogen production yield from 4.31 to 8.23 mL/h and 5.70 to 9.08 mmol H2/g starch, respectively. This enhancement in hydrogen production rate and yield was associated with a shift from acetic acid and ethanol formation to formation of butyric acid as the predominant metabolite. The increase in hydrogen production yield was attributed to the increase in the available residual NADH for hydrogen production. When lactic acid was used as the sole carbon source, no significant hydrogen production was observed.  相似文献   

9.
Efficient hydrogen storage, transportation and generation are key-technology for future hydrogen economy. Sodium borohydride (NaBH4) stands out as promising hydrogen energy carrier with merits of high volumetric density and environmentally benign hydrolysis products. Flower-like layered double hydroxide α-Co(OH)2 with intercalation of B species was synthesized via hydrothermal crystallization method using sodium tetraphenylboron as source of B and alkaline, which makes it different from the previous supporting materials. Pure or mixed cobalt oxides with different valence states containing B (CoO/B, Co3O4/B, Co+CoO/B, CoO+Co3O4/B) were subtly prepared via controlling calcination temperature, time and atmosphere for sodium borohydride hydrolysis. Coral-like CoO+Co3O4/B displayed superior hydrogen generation rate (6478 mlH2·min?1·g?1metal) with arrhenius activation energies of 41.14 kJ/mol for NaBH4 hydrolysis in alkaline solutions compared to those reported pure precious metals. The out-standing catalytic performance of CoO+Co3O4/B may be attributed to electron transfer among cobalt oxide. DFT calculation indicates NaBH4 hydrolysis undergoes a reaction path on CoO+Co3O4 surface with lower relative energies.  相似文献   

10.
The semi-methanolysis reactions with hydrochloric acid and acetic acid were used for the hydrogen production from sodium borohydride (NaBH4). The effects of the NaBH4 concentration, hydrochloric acid and, acetic acid concentration, and temperature on the reactions were investigated. The maximum hydrogen production rates in the semi-methanolysis with 1 M hydrochloric acid and acetic acid were 4875 and 3960 ml min?1, respectively. At the same time, the semi-methanolysis reactions with the acids are completed within 4 and 5 s, respectively. The power law kinetic model is performed for kinetic studies. Activation energies for the semi-methanolysis reactions of NaBH4 in the presence of hydrochloric acid and acetic acid were found as 5.84 and 2.81 kJ mol?1, respectively.  相似文献   

11.
A study was undertaken in order to investigate the potential of hydrogen (H2) generation by hydrolysis of sodium borohydride solution (10 wt% NaBH4 and 7 wt% NaOH), in batch reactors, operating at moderate pressures (up to ∼1.2 MPa), in the presence of a powdered nickel-ruthenium based catalyst, reused between 311 and 316 times, to feed on-demand a proton exchange membrane fuel cell. A different approach to the testing of the performance of the batch NaBH4 hydrolysis system is explored, by the quick opening of the reactor release gas valve, to satisfy a sudden H2 demand; and hydrogen generation rates (HGR) are evaluated by changing catalyst amount, operating pressure and successive refueling. The results have shown the tendency of the studied system to maintain constant the H2 generation rates, before and after one swift interruption, for single fuel injections (for 2.1 wt% of reused Ni–Ru based catalyst, a maximum value of HGR of 0.61 L(H2)min−1 g−1(catalyst) at 0.4 MPa, or based on the active metal ruthenium, of 47.5 L(H2)min−1 g−1(Ru), was achieved). This trend was different in the experiments with successive refueling. The present paper go forward in testing the potential of NaBH4 system over reused Ni–Ru catalyst after supplying a sudden demand of H2. Bearing in mind the market of low-power H2-PEMFCs for portable devices, the herein results are original and useful from an application point of view.  相似文献   

12.
The enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO was investigated with aid of simultaneous metal deposition. The simultaneous deposition for such metals as Ag, Au, Cu, Ni, Pd, Pt, and Rh was evaluated for the H2 production from aqueous methanol solution. As a result, the addition of Cu ion was effective improvement in photocatalytic hydrogen evolution. The photocatalytic hydrogen production using ZnO photocatalyst with aid of simultaneous deposition of Cu was approximately 130 times better than those obtained with bare ZnO. The Cu-deposited ZnO had the response to the visible light for the hydrogen formation. After the photocatalytic hydrogen production, the in-situ Cu-photodeposited ZnO sample was characterized by X-ray diffraction (XRD), UV–visible diffuse reflectance spectrometry (UV-DRS), and photoluminescence (PL) spectroscopy.  相似文献   

13.
The sulfuric acid decomposition should be performed in the wide temperature ranges from 550 °C to 950 °C to absorb the sensible heat of He in SI process. Therefore, the catalysts for the reaction should be stable even in the very corrosive reaction condition of 650 °C. Here, the Pt/n-SiC catalyst was prepared for the purpose and compared with the Pt/SiC catalyst. The both catalysts showed the high stability in the temperature ranges from 650 to 850 °C. The n-SiC with the surface area of 187.1 m2/g was prepared using nano-sized SiO2, which resulted in amorphous SiC phase. The SiC support with the surface area of 19.2 m2/g for the comparison showed the well crystalline structure. In spite of the large surface area differences between the n-SiC and SiC support, the Pt particle sizes of the Pt/n-SiC (average Pt size: 26.4 nm) catalyst were not so much different from those of the Pt/SiC (average Pt size: 26.1 nm) catalyst after the calcination at 1000 °C for 3 h. However, the catalytic activity of the Pt/n-SiC was much higher than that of the Pt/SiC. XRD analysis indicated that the Pt particles on the Pt/n-SiC was more stable than those of the Pt/SiC in the sulfuric acid decomposition and XPS analysis showed that the Pt valence state on the Pt/n-SiC was higher than that on the Pt/SiC. The surface analysis showed that the surface of the n-SiC particles was covered by SiO2 and Si4C4−xO4. These experimental results indicate that the Pt metal particles on n-SiC were stabilized on the oxidized Si surface. Therefore, it is suggested that the Pt particles stabilized on the oxidized Si surface can be a reason for the higher activity of the Pt/n-SiC catalyst as compared with the Pt/SiC catalyst.  相似文献   

14.
An experimental study is presented both on the generation and storage of molecular hydrogen (H2) by small additions of an organic polymer – carboxymethyl cellulose (CMC) – to sodium borohydride (NaBH4) through the alkaline hydrolysis, in the presence of a powdered nickel–ruthenium based catalyst reused from 274 to 282 times. The experiments were performed at 45 °C in two batch reactors with internal volumes of 0.229 L and 0.369 L, made of stainless-steel with bottom conical shape, positioned vertically.  相似文献   

15.
Sulfuric acid decomposition was conducted at atmospheric pressure and a GHSV of 72,000 mL/gcat h in the temperature ranges from 650 to 850 °C. The Pt–Al (1wt% Pt/Al2O3) and and Pt–SiC–Al (1wt% Pt/SiC-coated-Al2O3) catalysts were prepared by an impregnation method. The Pt–Al catalyst rapidly deactivated at 650 and 700 °C, but was stable at 750 and 850 °C. The aluminum sulfate was observed on the spent Pt–Al catalyst by an FT-IR, an X-ray spectroscopy and a TGA/DSC analyzer, which was suggested to be a cause of the deactivation at lower reaction temperature. The alumina support was coated with SiC by a CVD method with methyltrichlorosilane (MTS) to get a non-corrosive support (SiC–Al) with high surface areas. The thermal analysis of the spent Pt–SiC–Al showed that the aluminum sulfate formation was suppressed during the sulfuric acid decomposition. The Pt–SiC–Al catalyst was not only active higher than the Pt–Al catalyst, but was also stable at all the tested reaction temperature.  相似文献   

16.
In this study, 5-amino-2, 4-dichlorophenol-3, 5-ditertbutylsalisylaldimine-Ni complex catalyst is synthesised and used as an alternative to previous studies to produce hydrogen from hydrolysis of sodium borohydride. The resulting complex catalyst is characterised by XRD, XPS, SEM, FT-IR and BET surface area analyses. Experimental works are carried out at 30 °C with 2% NaBH4, 7% NaOH and 5 mg of catalyst. The maximum hydrogen production rate from hydrolysis of sodium borohydride with nickel-based complex catalyst compared to the pure nickel catalyst is increased from 772 ml min?1g?1 to 2240 ml min?1g?1 by an increase of 190%. At the same time, the hydrolysis reaction with pure nickel catalyst is completed in 145 min while the hydrolysis reaction with nickel-based complex catalyst is completed in 50 min. The activation energy of this hydrolysis reaction was calculated as 18.16 kJ mol?1. This work also includes kinetic information for the hydrolysis of NaBH4.The reusability of the nickel-based complex catalyst used in this study has also been studied. The nickel-based complex catalyst is maintained the activity of 72% after the sixth use, compared to the first catalytic use.  相似文献   

17.
Herein we report the development of a cost-effective nanocluster catalyst for the hydrolytic dehydrogenation of ammonia-borane which is considered to be one among the new hydrogen storage materials. Zeolite confined copper(0) nanoclusters were prepared by the ion-exchange of Cu2+ ions with the extra framework Na+ ions in zeolite-Y followed by reduction of the Cu2+ ions within the cavities of zeolite with sodium borohydride in aqueous solution and characterized by HR-TEM, XRD, XPS, SEM, EDX, ICP-OES, Raman spectroscopy and N2 adsorption–desorption technique. Zeolite confined copper(0) nanoclusters are found to be active catalysts in the hydrolysis of ammonia-borane even at low temperatures (≤15 °C) and stable enough for being isolated as solid materials. They provide 1300 turnovers in hydrogen generation from the hydrolysis of ammonia–borane at room temperature. The average value of turnover frequency is 46.5 h−1 for the same reaction. More importantly, zeolite confined copper(0) nanoclusters were found to be isolable, bottleable and reusable catalysts in the hydrolytic dehydrogenation of ammonia-borane; even at fifth run the complete release of hydrogen from the hydrolysis of ammonia-borane at room temperature is achieved. The work reported here also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy and the effect of catalyst concentration on the rate for the catalytic hydrolysis of ammonia–borane.  相似文献   

18.
Photofermentative hydrogen production from olive mill wastewater (OMW) by Rhodobacter sphaeroides O.U.001 was assessed under iron and molybdenum supplementation. Control cultures were only grown with 2% OMW containing media. The analysis included measurements of biomass accumulation, hydrogen production, pH variations of the medium, and changes in the chemical oxygen demand (COD) of the wastewater. Growth under control and Mo-supplemented experiments yielded about the same amount of biomass (∼0.4 g dry cell weight per L culture). On the other hand, Mo addition slightly enhanced the total volume of H2 gas production (62 mL H2), in comparison with the control reactor (40 mL H2). Fe-supplemented cultures showed a significant increase on H2 production (125 mL H2), tough having a longer lag time for the observation of the first H2 bubbles (24 h), compared to the control (15 h) and Mo-supplemented ones (15 h). Fe-added cultures also yielded better wastewater treatment by achieving 48.1% degradation of the initial chemical oxygen demand (COD) value compared to the control reactor having 30.2% COD removal efficiency. Advances described in this work have the potential to find applications in hydrogen industry while attempting an effective management of cheap feedstock utilization.  相似文献   

19.
以甲酸为发酵原料进行试验,控制发酵料液的pH在4.8左右,试验共分为10组,每组中分别含有不同浓度的乙酸作为抑制剂。采用批量发酵工艺,进行厌氧发酵产氢,研究乙酸在产氢过程中的抑制作用。由试验可知,当乙酸浓度≥7000mg/l时,抑制作用显著,使产气停止。  相似文献   

20.
This work deals with the effect of catalyst preparation method of the mixed Co, Mg and La oxide catalysts on their structure and catalytic properties for ammonia decomposition. Two methods are used for catalysts preparations impregnation and co-precipitation (in air and in pure O2 atmosphere), The Mg/La = 2 molar ratio and 5 wt% of cobalt content was maintained same in all catalysts. The catalyst performance was evaluated in the temperature range 300–550 °C at atmospheric pressure. The prepared catalysts were characterized by BET, XRD, TPR, XPS, CO2-TPD and SEM techniques. No pronounced differences were observed in BET among the catalysts. It was found that the 5CML-OXY (5 wt%Co over MgLa catalyst prepared by co-precipitation method in oxygen atmosphere) has superior activity among the other catalysts. This could be attributed to availability of easily reducible cobalt species determined by TPR studies and enhanced interaction between Mg and La determined by SEM and XPS. The moderate basic site density determined by CO2-TPD results was also increased in 5CML–OXY catalysts compared with other catalysts. These consequences are might be one of the reasons for enhanced activity of 5CML–OXY catalyst compared to other catalysts. Hence catalyst preparation by co-precipitation in oxygen atmosphere is the best method which might be one of the parameters that influenced on catalytic properties of the cobalt on MgOLa2O3 system, for ammonia decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号