首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renewable fuels such as biodiesel are introduced as promising environmental friendly fuels and they can be applied as alternative fuels instead of fossil fuels. In the present study, a modeling study based on statistical learning theory was investigated by the least square support vector machine (LSSVM) approach for non-catalytic biodiesel production in supercritical methanol. This model can estimate the biodiesel yield as a function of temperature, pressure, reaction time, and Methanol/oil ratio. The results indicated that the suggested LSSVM model was a satisfactory model to predict biodiesel yield that was confirmed by a high value of R2 (0.9961) and low value of absolute deviation (1.17%). In addition, our model has been compared with another previous Artificial neural network (ANN)-based model and great estimations of both models were proved.  相似文献   

2.
Abstract

Thermal conductivity and dynamic viscosity play key role in heat transfer capacity of nanofluids. In the present study, thermal conductivity and dynamic viscosity of Fe2O3/water are modeled by applying various artificial neural network algorithms. The applied algorithms are MLP, GA-RBF, LSSVM, and CHPSO ANFIS algorithms. The data for modeling procedure are extracted from several experimental studies. Obtained results by the different algorithms are compared and it was concluded that the highest R-squared values belonged to GA-RBF algorithm which were equal to 0.9962 and 0.9982 for thermal conductivity ratio and dynamic viscosity, respectively.  相似文献   

3.
Fossil fuels are available in limited quantity and may extinct in future. Moreover, pollutant emission from diesel engines affects the ecological systems. Biodiesel, derived from vegetable oil, is a renewable and green source of fuel. In this study, biodiesel produced from base catalyzed transesterification was blended with different diesel volumes. The diesel–biodiesel blends showed varied flash point (168–42°C), viscosity (4.34–3.31 mm2/s), density (0.872–0.8351 g/cm3), acid value (0.3–0.4 mg KOH/g), and cetane number (51.6–49.5). The results showed that alcohol addition helped in reducing viscosity and density of biodiesel by almost half. These provide explanation on engine performance, combustion, and emission characteristics.  相似文献   

4.
Biodiesel obtained from inedible sources emerged as a productive approach in Indian energy scenario due to the scarcity of food resources come up with extensive usage of edible crops. Kusum (Schleichera oleosa) oil is abundantly available in India and can be used as feedstock to produce biodiesel. However, issues such as higher viscosity, poor stability, and lower calorific value result in poor ignition characteristics, hence limiting its use in combustion applications. An improvement in performance and emission characteristics can be achieved by doping nanoparticles in Kusum biodiesel (KBD). The present work examines the impact of a metal compound and carbon‐primarily based nanoparticles on the evaporation time and ignition probability of the KBD. During the experimental process, different fuel samples of KBD were prepared by amalgamating nanoparticles; then, a sequence of hot plate (stainless steel) ignition test was conducted on these test fuels. The comparative assessment of neat biodiesel and the biodiesel fuel doped with 30 ppm each of alumina (Al2O3), and multiwalled carbon nanotubes (MWCNTs) nanoparticles were carried out. The Kusum oil was converted to biodiesel using two‐stage transesterification process. In the initial stage, refined oil was gone through the acid catalyst esterification process followed by the transesterification reaction. The prepared methyl ester was confirmed and characterized using GC‐MS technique. The thermophysical and spray properties of the test fuels including density, viscosity, calorific value, cloud/pour point, Sauter mean diameter (SMD), and specific surface area (SSA) were also calculated. The experimental result showed a significant increase in ignition probability and heat conduction properties due to improved surface area/volume ratio. Also, lower evaporation time was noted for metal/carbon‐based nanoparticles doped biodiesel as compared with neat biodiesel.  相似文献   

5.
Abstract

The purpose of this work is to investigate biodiesel production processes from vegetable oils. Biodiesel fuel can be made from new or used vegetable oils and animal fats, which are non-toxic, biodegradable, renewable resources. The vegetable oil fuels were not acceptable because they were more expensive than petroleum fuels. Biodiesel has become more attractive recently because of its environmental benefits. With recent increases in petroleum prices and uncertainties concerning petroleum availability, there is renewed interest in vegetable oil fuels for diesel engines. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, and some engine performance problems still exist. The purpose of the transesterification process is to lower the viscosity of the oil. Pyrolysis produces more biogasoline than biodiesel fuel.  相似文献   

6.
7.
Today’s society relies heavily on fossil fuels as a main energy source. Global energy demand increase, energy security and climate change are the main drivers of the transition towards alternative energy sources. This paper analyses algal biodiesel production for the EU road transportation and compares it to the fossil fuels and 1st generation biofuels. A cost-effectiveness analysis was used to aggregate private and external costs and derive the social cost of each fuel. The following externalities were internalized: emissions (GHG and non-GHG), food prices impact, pesticides/fertilizers use and security of supply. Currently the social cost of producing algal biodiesel at 52.3 € GJ−1 is higher than rapeseed biodiesel (36.0 € GJ−1) and fossil fuels (15.8 € GJ−1). Biotechnology development, high crude oil prices and high carbon value are the key features of the scenario where algal biodiesel outcompetes all other fuels. A substantial investment into the biotechnology sector and comprehensive environmental research and policy are required to make that scenario a reality.  相似文献   

8.
Jatropha curcas, a member of the Euphorbiaceae family, is an upcoming energy source, which promises to mitigate the energy crisis and environmental pollution. Jatropha curcas oil is looked up in terms of availability and cost and also has several applications and enormous economic benefits. The seed oils of five Jatropha curcas biotypes were screened and evaluated for their physiochemical parameters, viz. oil content (20–43%), biodiesel yield (48–66%), density (.866–.969 g/cm3), viscosity (50.12–93.79 mm3/s), iodine value (232.738–457.16 mg/g), free fatty acid (18.847–7.614 mg/g), saponification value (59.29–93.79 mg/g), flash point (125–220°C), fire point (155–260°C) and ash content (.19–.399%), which were estimated for selection of the elite Jatropha curcas biotype. The best shoot regeneration (60%) was observed in Murashige and Skoog (MS) medium supplemented with naphthalene acetic acid (0.5 ppm) and benzyl amino purine (2.0 ppm). Root induction (90%) was successfully obtained in plain MS. Acclimatisation and hardening was quite successful with survival rate of 70%.  相似文献   

9.
One of the important thermophysical properties is viscosity which expresses the resistance of fluid to flow. The least squares support vector machine (LSSVM) algorithm is proposed as a novel method for prediction of dynamic viscosity of different normal alkanes in a wide range of pressure and temperature. As this study is purely computational, 228 experimental data points were gathered from literature for training and validation of the model. The outcomes of the LSSVM algorithm were compared with the actual data with acceptable average absolute relative deviation and the coefficient of determination (R2) of 1.014 and 0.9968, respectively. The comparisons showed that the predicting model has the potential of prediction of n-alkane dynamic viscosity in terms of pressure, temperature, and carbon number of n-alkane, so this strategy can be used as a simple tool for predicting the behavior of reservoir fluids.  相似文献   

10.
Biodiesel produced from oil-rich feedstocks is known as a green replacement for conventional petroleum diesel. Transesterification is the common method used for biodiesel production. Hence, in this contribution, neural network modeling and least square support vector machine (LSSVM) modeling were used to predict the transesterification of castor oil with methanol to form biodiesel. Also, genetic algorithm was used for the optimization of predictive model. Input and output parameter of predictive models for the prediction of biodiesel production yield and estimation of the efficiency of biodiesel production are catalyst weight (C), methanol-to-oil molar ratio (MOR), time (S), temperature (T), and fatty acid methyl ester (FAME) yield, respectively. Proposed LSSVM modeling predicts biodiesel production yield or FAME yield within ±2% relative deviation with a high value of coefficient of determination (0.99583) and a low value of absolute deviation (1.27) in which the mentioned statistical parameters represent the accuracy and robustness of the model.  相似文献   

11.
The attributes of renewability and environmental friendliness have made ethanol a preferable alternative to methanol in the production of biodiesel from lipid feedstocks. For the first time, this study adopted Response Surface Methodology (RSM) and Artificial Neural Network (ANN) to model coconut oil ethyl ester (CNOEE) yield. Transesterification parameters such as reaction temperature and ethanol/coconut oil molar ratio and catalyst dosage were varied. Maximum CNOEE yield of 96.70% was attained at 73 °C reaction temperature, 11.9:1 molar ratio, and catalyst dosage of 1.25 wt. %. The experimental yield was in agreement with the predicted yield. Central Composite Design was adopted to develop the RSM while feed-forward back propagation neural network algorithm was employed for the ANN model. Statistical indices were employed to compare the models. The computed coefficient of determination (R2) of 0.9564, root-mean-squarce-error (RMSE) of 0.72739, standard error of prediction (SEP) of 0.008021, mean average error (MAE) of 0.612, and average absolute deviation (AAD) of 0.674901 for RSM model compared to those of R(0.9980), RMSE (0.68615), SEP (0.007567), MAE (0.325), and AAD (0.3877) for ANN indicated the superiority of the ANN model over the RSM model. The key fuel properties of the CNOEE met with those of biodiesel international standards.  相似文献   

12.
In this study, two selected feedstocks, Moringa oleifera and Jatropha curcas seed oils, and their methyl esters (biodiesel) were subjected to two new different hybridization processes at varying proportions experimentally. The hybrid compositions were J50M50, J40M10, J30M20, J20M30, and J10M40 from crude oil samples (in situ) and BM50J50, BM40J10, BM30J20, BM20J30, and BM10J40 from produced biodiesel by transesterification (ex situ) using production variables and optimization sequences. The hybrids were evaluated for chemo-physical and thermal properties using American Society for Testing and Materials and South African National Standards standards for each specific test(s). Results obtained revealed the efficacy of hybridization in improving the specific biodiesel properties as fuels. Specific tests include viscosity, specific gravity, refractive index, cetane index, fatty acid composition, free and total glycerine (TG), free fatty acid (FFA) composition, flash point, pour and cloud points, and calorific values. These were all higher and better than the single-stock biodiesel fuels. Moringa oleifera biodiesel, which was proved an excellent biodiesel fuel in the previous studies of the authors having high oleic acid content (>70%), impacted positively on Jatropha in enhancing its potential, with positive correlation at a 95% confidence level (α > 0.05) and on analysis of variation (ANOVA). This is a new approach in biodiesel development as studies of this nature are scarce in the literature.  相似文献   

13.
Nowadays, natural-based oxygenated fuels, especially biodiesel and ethanol, have been considered as substitutes for fossil fuels. Because of relatively lower energy content of oxygenated fuels, it is necessary to blend them with fossil ones. In this research, authors conducted an investigation on some BED blends to determine and compare their effects on equivalence ratio, exhaust oxygen fraction and water and oil temperature in a diesel engine. For this purpose, 18 different blendes of ethanol and biodiesel with net diesel fuel were tested in a MT4-244 engine1 considering two engine speeds in full load condition. In almost all samples the equivalence ratio decreased with increasing of biodiesel and ethanol percents. Exhaust oxygen fraction in all of samples increased with increasing of biodiesel and ethanol percents, whereas the engine water and oil temperatures slightly reduced.  相似文献   

14.
In this experimental work, the density, dynamic viscosity and higher heating value of methyl ester based waste cooking palm-biodiesel oil (WMEPB) was investigated under varying temperature and blend ratio condition with No. 2 diesel fuel. The transesterified fatty acid methyl ester of palm vegetable oil collected from local food and beverage shops was used as neat biodiesel. Four different fuel blends (20%, 40%, 60% and 80% by volume mixing with base diesel) were studied along with base No. 2 diesel fuel and pure biodiesel. Tests for dynamic viscosity and density were performed in the temperature range 0–130 °C for each fuel sample whereas the higher heating values were determined at 25 °C room temperature condition. It is found that pure biodiesel has the highest density and dynamic viscosity at a given temperature whereas it exhibits lowest combustion heating value among the six fuels. Moreover, the density for each fuel sample decreases linearly with the increase in temperature. On the other hand, the dynamic viscosity decreases exponentially with the temperature for each fuel sample. In addition, based on the experimental results, regression correlations have been proposed for the density, dynamic viscosity, and higher heating value of the fuels. Subsequently, comprehensive error analyses of these proposed correlations were performed. In particular, the correlation for density and dynamic viscosity were respectively compared with Kay's mixing rule and Grunberg-Nissan mixing rule theory in order to validate their applicability. It is found that density correlations predicted within ±0.3% average error band. And, as high as 72.2% of the dynamic viscosity data were in the range of ±5% average error while the remaining data fell within ±10% error range. And finally, through a comparative study with the available fuel property results of fresh methyl ester palm biodiesel, it is found that available existing correlations derived from fresh palm biodiesel studies can not accurately predict the fuel properties of same waste biodiesel and its blends with diesel.  相似文献   

15.
In the current global energy scenario, fossil fuels face challenges with regards to exorbitant demand, environmental hazards and escalating costs. In this regard, the technical community is in quest for alternative resources. In this context, biodiesel fuel is potentially considered as alternative fuels for compression ignition engines. Hence, in this current investigation, biodiesel and biodiesel emulsions are prepared from a vegetable oil and further subjected for the blending with potential additives such as CNT (Carbon Nanotubes) and DEE (Di-Ethyl Ether) to improve the working attributes of the diesel engine. The entire investigation was carried out in five stages. In the first stage, both pure diesel and biodiesel (derived from jatropha oil) fuels were tested in the diesel engine to obtain baseline readings. In the second stage, water–biodiesel emulsion fuel was prepared in the proportion of 91% of biodiesel, 5% of water and 4% of emulsifiers (by volume). In the third stage, 50 ppm of CNT, 50 ml of DEE and combined mixture of CNT+DEE (50 ppm CNT+50 ml DEE) were mixed with the water–biodiesel emulsion fuel separately to prepare the CNT and DEE blended water–biodiesel emulsion fuels respectively. In fourth stage, the prepared emulsion fuels were subjected to stability investigations. In the fifth stage, all the prepared stable emulsion fuels were subjected for experimental testing in a diesel engine. It was observed that the CNT and DEE blended biodiesel emulsion fuels reflected better performance, emission and combustion attributes than that of pure diesel and biodiesel. At the full load, the brake thermal efficiency, NO and smoke emission of CNT+DEE fuels was 28.8%, 895 ppm and 36%, whereas it was 25.2%, 1340 ppm and 71% for pure diesel respectively. It was also observed that on adding CNT and DEE with the biodiesel emulsion fuels, the ignition delay was shortened and henceforth, the additive blended biodiesel emulsion fuels exhibited higher brake thermal efficiency and reduced emissions (NO, smoke) than that of pure diesel and biodiesel.  相似文献   

16.
Compression ignition engines are the dominant tools of the modern human life especially in the field of transportation. But, the increasing problematic issues such as decreasing reserves and environmental effects of diesel fuels which is the energy source of compression ignition engines forcing researchers to investigate alternative fuels for substitution or decreasing the dependency on fossil fuels. The mostly known alternative fuel is biodiesel fuel and many researchers are investigating the possible raw materials for biodiesel production. Also, hydrogen fuel is an alternative fuel which can be used in compression ignition engines for decreasing fuel consumption and hazardous exhaust emissions by enriching the fuel. In this study, influences of hydrogen enrichment to diesel and diesel tea seed oil biodiesel blends (B10 and B20) were investigated on an unmodified compression ignition engine experimentally. In consequence of the experiments, lower torque and higher brake specific fuel consumption data were measured when the engine was fuelled diesel biodiesel blends (B10 and B20) instead of diesel fuel. Also, diesel biodiesel blends increased CO2 and NOx emissions while decreasing the CO emissions. Hydrogen enrichment (5 l/m and 10 l/m) was improved the both torque and brake specific fuel consumption for all test fuels. Furthermore, hydrogen enrichment reduced CO and CO2 emissions due to absence of carbon atoms in the chemical structure for all test fuels. Increasing flow rate of hydrogen fuel from 5 l/m to 10 l/m further improved performance measures and emitted harmful gases except NOx. The most significant drawback of the hydrogen enrichment was the increased NOx emissions.  相似文献   

17.
Among the alternative fuels, vegetable oil is seen as a potential source of energy due to its readily available variety of sources and its certain physical properties that are comparable to those of diesel fuels. However, higher contents of triglyceride in vegetable oil contribute to higher viscosity and density that is affecting the inferior engine performance and emissions. The key properties, such as viscosity, density, and calorific value (CV), have a significant effect on fuel atomization, fuel combustion, and exhaust emissions. In this study, refined palm oil (RPO) was blended with a newly introduced novel biofuel, Melaleuca cajuputi oil (MCO), in order to reduce the viscosity and density and enhance blend properties. This blend is analyzed and compared with RPO–diesel and RPO–ethanol blends in terms of viscosity, CV, and density. These hybrid binary biofuel (HBB) blends were prepared on the volumetric basis of 10%, 20%, 30%, and 50% of MCO, ethanol, and diesel with RPO. The basic fuel properties and the correlation of temperature–viscosity–blend ratio were analyzed. The results showed that the MCO has comparable key properties to those of diesel fuels. The viscosity and density of HBB decrease as the fraction of MCO/ethanol/diesel increases in the blend. The higher the fraction of MCO/diesel in the blend, the higher is the CV observed. Notably, the viscosity of neat RPO and its blends is strongly influenced by temperature variations. The combination of blend technique and preheating had a substantial effect in reducing the viscosity and density of the HBB. Remarkably, the blend of MCO–RPO has the potential to highly considered as a new source of biofuel.  相似文献   

18.
The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specifications in biodiesel standards and some prior results. The kinematic viscosity of kapok oil methyl esters was greater than expected, an observation traced to the elevated amounts of methyl esters with cyclic moieties. Overall, kapok oil is a potential biodiesel feedstock. The 1H and 13C NMR spectra of kapok methyl esters are reported.  相似文献   

19.
High viscosity, high pour point and low volatility are the major application blocks for biodiesel. In this study gasoline is mixed with biodiesel and they can be soluble with each other at any proportion. Combustion and emission characteristics are investigated on a turbocharged, in-line 6-cylinder, common rail diesel engine. Results showed that pour points, viscosities and distillation temperatures obviously decrease with gasoline ratio. Peak combustion pressures of biodiesel/gasoline blend fuels increase slightly. Ignition delays, peak heat release rates and combustion temperatures increase at partial and medium loads. HC and CO emissions increase at partial and medium loads and drop at high loads. NOX emissions of blend fuels grow by 4.2% and 6.7% compared with biodiesel averagely at 1400r/min, while soot emissions decline by 31.6% and 38.6%. For ultrafine particles (<220 nm), diameters to peak number concentration of blend fuels are smaller than that of biodiesel. Number concentrations decrease by 30% and 49% averagely compared to biodiesel. Especially, gasoline plays a significant reduction role on ultrafine particles at low and medium loads and soot emissions at high loads.  相似文献   

20.
Abstract

The objective of this study was to estimate mathematical relationships derived from biodiesel fuels from various vegetable oils by non-catalytic supercritical methanol and ethanol method. The vegetable oils are all extremely viscous with viscosities ranging from 10 to 20 times greater than petroleum diesel fuel. The aim of the transesterification process is to lower the viscosity of the oil. Methyl and ethyl esters as biodiesels were prepared from vegetable oils through transesterification by non-catalytic supercritical fluids. The biodiesels were characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value (HHV). The viscosities of biodiesels (3–5 mm2/s at 311 K) were much less than those of pure oils (27–54 mm2/s at 311 K), and their HHVs of approximately 40.5 MJ/kg were 10% less than those of petrodiesel fules (~45 MJ/kg). The most important variables affecting the ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. There is high regression between density and viscosity values vegetable oil methyl esters. The relationships between viscosity and flash point for vegetable oil methyl esters are considerably regular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号