首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work investigates the effect of using Bi2O3 nanoparticles at a different proportion of Azolla algae methyl ester in a four-stroke single cylinder diesel engine. Azolla algae can be used to produce biodiesel, because of high oil content. Biodiesel is developed by the transesterification of oil. In the present study, the Bi2O3 nano additives into the oil-based methyl ester blend and its diesel blends are analyzed the emission characteristic at different load. Addition of Bi2O3 nanoparticle is a strategy to reduce emission (CO, HC and smoke) of the biodiesel.  相似文献   

2.
Microalgae biodiesel has been considered ?as a clean renewable fuel for diesel marine engines. This is due to its optimistic characterizations such as ?rapid growth rate, high productivity, and its ability to convert CO2 into fuel. In this study, the use of microalgae biodiesel, obtained from Botryococcus braunii, as an alternative fuel for diesel marine engines has been investigated. The diesel engine is verified experimentally using Ni-Doped ZnO nano additive blends with algae biodiesel and neat diesel fuel. The results showed that doped nano additive blends? produce less emission compared to B20.  相似文献   

3.
The present work investigates the effect of using TiO2 Nanoparticles at a different proportion of Azolla algae methyl ester, in a four-stroke single cylinder diesel engine. Biodiesel can be obtained from Azolla algae due to the presence of high oil content. The oil was extracted from Azolla algae by means of the Soxhlet extraction method which was compared to be more effective than the oil obtained by means of hydraulic pressing machine. The obtained oil was converted to biodiesel by means of transesterification process. The fuel properties of the prepared Azolla methyl ester found to confirm with the ASTM standards. TiO2 Nanoparticles were synthesized by means of ball milling process and characterized by means of Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared (FTIR) and X-Ray Diffraction (XRD) techniques. In the present study, the performance and emission characteristics of diesel engine were analyzed with the addition of TiO2 Nanoparticles to Azolla oil methyl ester (25,50,75 and100 ppm) and compared with that of diesel. The % decrease in Brake Specific Fuel Consumption (BSFC) for B20 + 25, B20 + 50, B20 + 75 and B20 + 100 were found to be 7.81, 12.05, 19.71, and 23.53, respectively, when compared to B20. The % increase in Brake Thermal Efficiency (BTE) for B20 + 25, B20 + 50, B20 + 75 and B20 + 100 were found to be 2.60, 8.49, 8.79 and 13.38, respectively, when compared to B20. The % decrease in Carbon monoxide (CO) for B20 + 25, B20 + 50, B20 + 75 and B20 + 100 were found to be 21.15, 51.92, 54.80, and 57.30, respectively, when compared to B20. The % decrease in Hydro Carbon (HC) for B20 + 25, B20 + 50, B20 + 75 and B20 + 100 were found to be 7.53,8.36,10.04 and 12.97, respectively, when compared to B20. The % increase in Oxides of Nitrogen (NOx) for B20 + 25, B20 + 50, B20 + 75 and B20 + 100 were found to be 5.44, 7.85, 8.67, and 9.16, respectively, when compared to B20. The % decrease in smoke for B20 + 25, B20 + 50, B20 + 75 and B20 + 100 were found to be 18.02, 30.18, 31.98 and 36.04, respectively, when compared to B20. Addition of TiO2 Nanoparticles with the Azolla biodiesel is found to be an effective approach to improve the performance and emission characteristics of a diesel engine without any modification.  相似文献   

4.
Biodiesel either in neat form or as a mixture with diesel fuel is widely investigated to solve the twin problem of depletion of fossil fuels and environmental degradation. The main objective of the present study is to compare performance, emission and combustion characteristics of biodiesel derived from non edible Jatropha oil in a dual fuel diesel engine with base line results of diesel fuel. The performance parameters evaluated were: brake thermal efficiency, brake specific fuel consumption, power output. As a part of combustion study, in-cylinder pressure, rate of pressure rise and heat release rates were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen and smoke opacity with the different fuels were also measured and compared with base line results. The different properties of Jatropha oil after transestrification were within acceptable limits of standards as set by many countries. The brake thermal efficiency of Jatropha methyl ester and its blends with diesel were lower than diesel and brake specific energy consumption was found to be higher. However, HC, CO and CO2 and smoke were found to be lower with Jatropha biodiesel fuel. NOx emissions on Jatropha biodiesel and its blend were higher than Diesel. The results from the experiments suggest that biodiesel derived from non edible oil like Jatropha could be a good substitute to diesel fuel in diesel engine in the near future as far as decentralized energy production is concerned. In view of comparable engine performance and reduction in most of the engine emissions, it can be concluded and biodiesel derived from Jatropha and its blends could be used in a conventional diesel engine without any modification.  相似文献   

5.
This paper investigated the role of the emission characteristics of a diesel engine when carbon black (CB) blended with Caulerpa peltata algae oil methyl ester (CPOME) is used as a fuel. Biodiesels are produced from Caulerpa peltata algae oil (CPO) by the transesterification process. The biodiesel blends containing 10%, 15%, and 20% CB were denoted as B20, B20CB10, B20CB15, and B20CB20. The CPOME was mixed with CB nanoparticles with the aid of a mechanical stirrer. The fuel properties of all blends were studied and compared according to ASTM standard. Tests were performed at full-load CI engine operation with a constant speed of 1500 rpm. The acquired data were studied for various parameters, such as exhaust emissions of HC, CO, CO2, NOx, and smoke opacity.  相似文献   

6.
基于不同原料生物柴油混合燃料的发动机性能研究   总被引:4,自引:0,他引:4  
对一台TDI柴油机燃用花椒籽、棉籽、棕榈和餐饮废油脂4种不同原料制成的生物柴油(以10%体积比分别与柴油混合制成)的动力性、经济性和排放特性进行了试验研究,探讨了4种生物柴油对发动机性能的影响。研究结果表明:在燃用4种生物柴油时,棕榈油制生物柴油的功率和纯柴油基本一致,其余混合燃料的功率都比纯柴油略有下降;4种混合燃料的油耗与纯柴油基本一致;与纯柴油相比,生物柴油混合燃料的碳烟、CO、HC排放均较低,而NOx排放略高。  相似文献   

7.
Many performance and emission tests have been carried out in reciprocating diesel engines that use biodiesel fuel over the past years and very few in gas turbine engines. This work aims at assessing the thermal performance and emissions at full and partial loads of a 30 kW diesel micro-turbine engine fed with diesel, biodiesel and their blends as fuel. A cycle simulation was performed using the Gate Cycle GE Enter software to evaluate the thermal performance of the 30 kW micro-turbine engine. Performance and emission tests were carried out on a 30 kW diesel micro-turbine engine installed in the NEST laboratories of the Federal University of Itajubá, and the performance results were compared with those of the simulation. There was a good agreement between the simulations and the experimental results from the full load down to about 50% of the load for diesel, biodiesel and their blends. The biodiesel and its blends used as fuel in micro-turbines led to no significant changes in the engine performance and behaviour compared to diesel fuel. The exhaust emissions were evaluated for pure biodiesel and its blends and conventional diesel. The results revealed that the use of biodiesel resulted in a slightly higher CO, lower NOx and no SO2 emissions.  相似文献   

8.
In this present work, corn oil biodiesel with La2O3 was used as an additive with neat diesel fuel and blends were prepared. La2O3 nanoparticles are dispersed in the emulsions with different dosage levels of 50, 75, and 100 ppm. A single-cylinder, four-stroke CRDI diesel engine is made to run on different fuel concentrations to study the effect of emission characteristics of the fuel. The test engine was operated under constant engine speed (1500 rpm) and different engine load test conditions. According to the experimental results, fuel blends with biodiesel fuel emission increases CO2 and NOx and reduces the CO, HC, and smoke emissions compared with the B20 fuel.  相似文献   

9.
ABSTRACT

In the present research work, the experimental analysis has been executed to investigate the influence of diethyl ether as an oxygenated additive to the diesel-biodiesel blend on the performance, combustion and emission characteristics of a diesel engine. The biodiesel (Frying oil methyl ester) was prepared by the transesterification process, and the biodiesel was added (40% by volume) to the diesel fuel to prepare the diesel-biodiesel blend (D60FME40). The diethyl ether was added to the diesel-biodiesel blends D60FM35 (diesel 60% + biodiesel 35% by volume) and D60FM30 (diesel 60% + biodiesel 30% by volume) with suitable volume proportions of 5% and 10% respectively to form diesel-biodiesel-diethyl ether blends ((D60FM35DEE5) & (D60FM30DEE10)). Initially, the test was conducted with diesel fuel to obtain the baseline reference reading. Then, the reading was compared with results taken from the engine using a diesel-biodiesel blend (D60FME40) and diethyl ether blends (D60FM35DEE5) & (D60FM30DEE10). The results reveal that the maximum brake thermal efficiency was obtained with diesel fuel and it was higher than the diesel-biodiesel blend and diethyl ether blends. The peak in-cylinder gas pressure and heat release rate in the premixed stage was less for the diesel-biodiesel blend, but it was increased with the addition of diethyl ether to the blend. The diesel-biodiesel-diethyl ether blends show less carbon monoxide and hydrocarbon emissions except for NOX emission as compared to the diesel and diesel-biodiesel blend, especially at the engine rated power.  相似文献   

10.
对生物柴油的质量指标进行了详细的介绍,为了研究发动机燃用生物柴油-柴油混合油时的动力性、经济性和排放性,设计相应的台架试验。结合生物柴油的质量指标和发动机燃油系统的结构分析影响原因,为发动机最终燃用柴油-生物柴油混合液的研究做准备。  相似文献   

11.
With a specific end goal to take care of the worldwide demand for energy, a broad research is done to create alternative and cost effective fuel. The fundamental goal of this examination is to investigate the combustion, performance and emission characteristics of diesel engine using biodiesel blends enriched with HHO gas. The biodiesel blends are gotten by blending KOME obtained from transesterification of karanja oil in various proportions with neat diesel. The HHO gas is produced by the electrolysis of water in the presence of sodium bicarbonate electrolyte. The constant flow of HHO gas accompanied with biodiesel guarantees lessened brake specific fuel consumption by 2.41% at no load and 17.53% at full load with increased the brake thermal efficiency by 2.61% at no load and 21.67% at full load contrasted with neat diesel operation. Noteworthy decline in unburned hydrocarbon, carbon monoxide, carbon-dioxide emissions and particulate matter with the exception of NOx discharge is encountered. The addition of EGR controls this hike in NOx with a slight decline in the performance characteristics. It is clear that the addition of HHO gas with biodiesel blends along with EGR in the test engine improved the overall characterization of engine.  相似文献   

12.
The present work is dedicated to study of diesel–biodiesel–ethanol blends in a diesel engine using addition of various concentrations of carbon nanowires. Algae oil from microalgae has the potential to become a sustainable fuel source as biodiesel. The Neochloris oleoabundans algal oil was extracted by mechanical extraction method. The transesterification reaction of algal oil with methanol and base catalyst was used for the production of biodiesel. Experimental investigation results were studied for various parameters, such as exhaust emission of carbon monoxide, hydrocarbon, oxides of nitrogen gases, smoke, and carbon dioxide.  相似文献   

13.
This paper exhibits the emission characteristics of a diesel engine fueled with jojoba oil methyl ester and its blends (10, 20, and 30%) utilizing the groundnut shell producer gas. Emission parameters of jojoba biodiesel were tested in dual-fuel mode at constant gas flow rate of 22.72 kg/h. Various oil characterizations like kinematic viscosity, specific gravity, flash and fire point, oxidation stability, calorific value, cetane number, sulfur content, and so on and emission parameters such as carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), nitrogen oxide (NOx), and smoke emissions are were taken into account. From the experimental values it can be resolved that there is substantial advancement in both oil characterization and emission parameters for minor blends of jojoba oil methyl esters in comparison to those of neat diesel.  相似文献   

14.
The present work is dedicated to the study of diesel–biodiesel–ethanol blends in a diesel engine using carbon nanowires additives of various concentrations. Algae oil from microalgae has the possibility of becoming a sustainable fuel source as biodiesel. The Neochloris oleoabundans algal oil was extracted by the mechanical extraction method. The transesterification reaction of algal oil with methanol and base catalyst was used for the production of biodiesel. Experimental investigation results were studied for various parameters such as exhaust emission of carbon monoxide, hydrocarbon, oxides of nitrogen gases, and smoke.  相似文献   

15.
In the present study, a comparative analysis of enrichment of hydrogen alongside diesel fuel and two different sources of biodiesel namely rice bran oil is an edible oil, and karanja oil being non-edible is tested. Hydrogen at a fixed flow rate of 7 lpm is inducted through the intake manifold. A total of six fuel samples are considered: diesel (D), hydrogen-enriched diesel (D + H2), hydrogen-enriched 10, and 20% rice bran biodiesel blend (RB10 + H2 and RB20 + H2), and hydrogen-enriched 10 and 20% karanja biodiesel blend (KB10 + H2 and KB20 + H2). Results indicate that enrichment of hydrogen improves combustion and results in 2.5% and 1.6% increase in the brake thermal efficiency of diesel fuel and rice bran biodiesel, respectively. For karanja biodiesel the increment is negligible. Fuel consumption of the D + H? is 6.35% lower and for RB10 + H? and KB10 + H? it is decreased by 2.9% and 1.3%, respectively. The Presence of hydrogen shows the 4–38% lower CO emissions and 6–14% lower UHC emission due to better combustion. The blends RB10 + H? and KB10 + H? produce up to 6–13% higher NOx emission and that for the blends RB20 + H? and KB20 + H? it goes up to 25%. Overall rice bran oil is found to provide better performance than karanja biodiesel.  相似文献   

16.
In this study, neat biodiesel with octanol additive was employed in a diesel engine and its effects on engine emission were studied. The five fuels evaluated were neat palm kernal oil biodiesel, octanol blended with biodiesel by 10%, 20%, and 30% volume, and diesel. All the emissions are reduced by the addition of octanol in biodiesel in all loads owing to the higher oxygen concentration of air/fuel mixtures and improved atomization. Hence, it is concluded that the neat biodiesel and octanol blends can be employed as an alternative fuel for existing unmodified diesel engines owing to its lesser emission characteristics.  相似文献   

17.
In the present work, the optimum biodiesel conversion from waste cooking oil to biodiesel through transesterification method was investigated. The base catalyzed transesterification under different reactant proportions such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of biodiesel. The optimum condition for base catalyzed transesterification of waste cooking oil was determined to be 12:1 and 5 wt% of zinc doped calcium oxide. The fuel properties of the produced biodiesel such as the calorific value, flash point and density were examined and compared to conventional diesel. The properties of produced biodiesel and their blend for different ratios (B20, B40, B60, B80 and B100) were comparable with properties of diesel oil and ASTM biodiesel standards. Tests have been conducted on CI engine which runs at a constant speed of 1500 rpm, injection pressure of 200 bar, compression ratio 15:1 and 17.5, and varying engine load. The performance parameters include brake thermal efficiency, brake specific energy consumption and emissions parameters such as Carbon monoxide (CO), Hydrocarbon (HC), Oxides of Nitrogen (NOx) and smoke opacity varying with engine load (BP). Diesel engine's thermal performance and emission parameters such as CO, HC, and NOx on different biodiesel blends demonstrate that biodiesel produced from waste cooking oil using heterogeneous catalyst was suitable to be used as diesel oil blends and had lesser emissions as compared to conventional diesel.  相似文献   

18.
Neat mahua oil poses some problems when subjected to prolonged usage in CI engine. The transesterification of mahua oil can reduce these problems. The use of biodiesel fuel as substitute for conventional petroleum fuel in heavy-duty diesel engine is receiving an increasing amount of attention. This interest is based on the properties of bio-diesel including the fact that it is produced from a renewable resource, its biodegradability and potential to exhaust emissions. A Cummins 6BTA 5.9 G2- 1, 158 HP rated power, turbocharged, DI, water cooled diesel engine was run on diesel, methyl ester of mahua oil and its blends at constant speed of 1500 rpm under variable load conditions. The volumetric blending ratios of biodiesel with conventional diesel fuel were set at 0, 20, 40, 60, and 100. Engine performance (brake specific fuel consumption, brake specific energy consumption, thermal efficiency and exhaust gas temperature) and emissions (CO, HC and NOx) were measured to evaluate and compute the behavior of the diesel engine running on biodiesel. The results indicate that with the increase of biodiesel in the blends CO, HC reduces significantly, fuel consumption and NOx emission of biodiesel increases slightly compared with diesel. Brake specific energy consumption decreases and thermal efficiency of engine slightly increases when operating on 20% biodiesel than that operating on diesel.  相似文献   

19.
In this work, the combustion and emission characteristics were studied in a 186FA diesel engine fuelled with biodiesel–diesel to examine the effect of the percentage of biodiesel in the blends, and the experimental investigation was conducted with various blending ratios of biodiesel under different operating conditions. In addition, the combustion noise of the diesel engine fuelled with biodiesel–diesel was analysed, and then the emission characteristics of NOx and soot were studied through simulation analysis where the formation rate and distribution of NOx and soot for pure diesel and B20 fuel were described. Based on the simulation data of the original diesel engine fuelled with B20 fuel, the swirl ratio and fuel injection timing were optimised and the technical measures were suggested to reduce the two different emissions simultaneously. The simulation results showed the emission characteristics were optimal when the swirl ratio was 2.7 and fuel injection timing was 7.5° degree of crank angle before top dead centre respectively.  相似文献   

20.
Oxygenated fuels like biodiesel and alcohols have the potential to provide a reliable and a cost effective alternative to India's increasing future energy demands. They have a prospective future since they are renewable and can be produced easily in India's rural areas. Due to rapid industrialization and the increased number of vehicles on the road, the energy needs of the country are increasing rapidly. Oxygenated fuels can substantially replace the large demand for diesel to generate power for the industries and to fuel diesel engines of the vehicles. In spite of the many advantages of using them, most of the researchers have reported higher NOx emissions, which is a deterrent to the market expansion of these fuels. The present program aims to review the NOx emissions from the CI engines fuelled with oxygenated fuels. To meet the stringent emission norms, the various NOx reduction technologies like use of additives, retarded fuel injection timing, biodiesel emulsion with water, and exhaust gas recirculation are reviewed. The results of the most effective and low cost technique of EGR in DI diesel engine fuelled with biodiesel–diesel blends and tri-compound oxygenated diesel fuel blends (ethanol–biodiesel–diesel fuel blends and methanol–biodiesel–diesel fuel blends) are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号