首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work investigates the production of biodiesel from Euglena sanguinea microalgal bio-oil using calcium methoxide as a heterogeneous catalyst. The catalyst was synthesized and characterized by Fourier Transform Infra-red (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), basicity, and basic site strength analysis. Initially, bio-oil was extracted from mass-cultivated biomass obtained from Euglena sanguinea algae. It was further pretreated and transesterified using calcium methoxide catalyst at various experimental conditions by which an optimum yield of 94.83% was achieved. The catalyst yielded above 90% up to 5 cycles of recovery and recycling. The kinetic studies were investigated at various reaction temperatures to find the rate of reaction. The activation energy and pre-exponential factor for the transesterification reaction were found to be 99.33 kJ mol?1 and 1.07 × 1014 min?1 respectively. The properties of the produced biodiesel were within the limits of ASTM D6751 standard.  相似文献   

2.
Evaluation of Radish (Raphanus sativus) seed oil (RSO) as a non-edible feedstock for biodiesel production was the main target of the present study. Extraction by solvent disclosed that radish seeds contains 33.50 wt.% of oil. Therefore, biodiesel production from it could be beneficial. Optimized base-catalyzed transesterification of RSO with methanol, ethanol and mixed methanol/ethanol was performed, to produce fatty acid methyl esters, fatty acid ethyl esters and mixed fatty acid methyl ethyl esters, respectively. The optimal yields of the methyl esters, ethyl esters and mixed methyl ethyl esters, were 95.55wt.%, 90.66 wt.% and 93.33 wt.%, respectively when the optimal reaction conditions were attained. Fuel properties of the parent oil were positively changed as consequence of transesterification reaction such that they fulfilled the standard limits as prescribed by ASTM D6751. Moreover, fuel properties of (biodiesels + petro diesel) blends conformed ASTM D7467-17 standards indicating their suitability as a fuel for diesel engines. Biodiesels form RSO were analyzed by thin layer chromatography and FTIR spectroscopy, and both techniques conformed its conversion into its corresponding alkyl esters.  相似文献   

3.
麻疯树油制备生物柴油的试验研究   总被引:2,自引:2,他引:0  
试验研究了麻疯树油在季铵碱催化剂(四甲基氢氧化铵)的作用下与甲醇发生转酯化反应生成脂肪酸甲酯(生物柴油)的反应条件.试验结果表明,该转酯化反应的最佳操作条件:四甲基氢氧化铵用量为麻疯树油质量的0.5%、油醇物质的量比为1:6、搅拌时间为30min、反应温度为65℃.  相似文献   

4.
The present study deals with the development of a biodiesel production reactor based on pressurized ultrasonic cavitation technique. Transesterification of Jatropha oil takes place by passing low-frequency ultrasonic irradiation in the reaction mixture flowing at pressurized conditions in the sonochemical reactor. Reaction variables such as reaction time, molar ratio, catalyst concentration, and pressure of the reaction mixture were investigated to find the optimal parameters for biodiesel production. The energy requirement decreases with increase in pressure. Very low value of Specific Energy Consumption (0.018 kWh/kg) and significantly high value of Energy Use Index (598.83) are obtained when the pressure of reaction mixture is 15 bar. Increasing the pressure thereafter, leads to nominal gains. Ultrasonic irradiation at high-pressure condition has an additional advantage of rapid reaction and lower requirement of alcohol to oil molar ratio and catalyst concentration. Fifteen bar pressure is optimal for biodiesel production.  相似文献   

5.
植物油制备生物柴油的研究   总被引:9,自引:0,他引:9  
以植物油为原料,在催化剂(KOH)的作用下,通过甲醇酯交换反应生成脂肪酸甲酯即生物柴油的试验研究,考察了醇油比、催化剂用量、反应温度、反应时间等反应条件的变化对植物油转化率和产品纯度的影响。  相似文献   

6.
Biodiesel was prepared from the crude oil of Simarouba glauca by transesterification with methanol in the presence of KOH as a catalyst. The reaction parameters such as catalyst concentration, alcohol to oil molar ratio, temperature and rate of mixing were optimised for the production of Simarouba oil methyl ester. The yield of methyl esters from Simarouba oil under the optimal condition was 94–95%. Important fuel properties of methyl esters of Simarouba oil (biodiesel) was compared with ASTM and DIN EN 14214. The viscosity was found to be 4.68 Cst at 40°C and the flashpoint was 165°C.  相似文献   

7.
In recent years, the commercial potential of oil extraction and biodiesel production derived from vegetable seed is being realized. The process energy input requirements are important factors in oil extraction and biodiesel production. This research work investigated oil extraction from flax seeds and compared extraction yield with the energy load. The effect of moisture content on the oil yield was compared between a mechanical oil expeller, organic solvent extraction, organic solvent and microwave assisted, organic solvent and ultrasonic assisted, and combined microwave and ultrasonic with organic solvent. The maximum oil yields % wt/wt from these techniques was 22.6%, 36.3%, 10.0%, 42.0% and 27.8%, respectively. The moisture content had a significant effect on oil yield with the mechanical oil expeller, organic solvent method and ultrasonic assisted extraction, whereas no or little effect was found on microwave‐assisted extraction. The microwave‐assisted extraction showed better results compared with the ultrasonic‐assisted and combined treatment methods. The relative energy consumption of these processes was experimentally investigated; energy ratios were calculated based on the amount of energy recovered to the amount of energy supplied to the flax seed for oil extraction. The net energy ratios showed that microwave‐assisted extraction had the highest (25.21%), followed by organic solvent method (14.04%), ultrasonic method (6.33%) and lowest was with combined ultrasonic and microwave assisted treatment (5.73%). These results showed that flax seed oil can be extracted using microwave‐assisted methods efficiently and in an energy feasible manner. In situ ultrasonic transesterification was applied to powdered samples with 4%, 8% and 12% moisture content (on % dry basis) within an ultrasonic bath having an intensity of 0.124 W/cm2. The flax seed biodiesel produced showed a highest conversion yield of 93%, and the effect of different moisture content on the yield showed that 4% moisture content sample produced the greatest biodiesel yield. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In the present work the production of a biodiesel from watermelon seed oil (Citrullus vulgaris) by methanol-induced transesterification using an alkaline catalyst (potassium hydroxide, KOH) has been examined. The influence of the operating variables such as agitation speed, temperature, reaction time, alcohol amount, and catalyst concentration was determined experimentally and found to be 550 rpm agitation rate, 60°C reaction temperature, 55 min reaction time, 20% of methanol, and 13 g of catalysts concentration for 2.5 liters of oil. The yield of biodiesel from the watermelon methyl ester (WME) under optimized conditions is found to be 91%. The properties of biodiesel are measured as per ASTM standards and compared with the base diesel.  相似文献   

9.
The present study deals with the production of biodiesel using waste fish oil. The research assesses the effect of the transesterification parameters on the biodiesel yield and its properties, including temperature (40–60 °C), molar ratio methanol to oil (3:1–9:1) and reaction time (30–90 min). The experimental results were fitted to complete quadratic models and optimized by response surface methodology. All the biodiesel samples presented a FAME content higher than 93 wt.% with a maximum, 95.39 wt.%, at 60 °C, 9:1 of methanol to oil ratio and 90 min. On the other hand, a maximum biodiesel yield was found at the same methanol to oil ratio and reaction time conditions but at lower temperature, 40 °C, which reduced the saponification of triglycerides by the alkaline catalyst employed. Adequate values of kinematic viscosity (measured at 30 °C) were obtained, with a minimum of 6.30 mm2/s obtained at 60 °C, 5.15:1 of methanol to oil ratio and 55.52 min. However, the oxidative stability of the biodiesels produced must be further improved by adding antioxidants because low values of IP, below 2.22 h, were obtained. Finally, satisfactory values of completion of melt onset temperature, ranging from 3.31 °C to 3.83 °C, were measured.  相似文献   

10.
大豆油制备生物柴油的工艺探索   总被引:7,自引:1,他引:7  
试验研究了大豆油在催化剂(NaOH)的作用下与甲醇发生转脂化反应生成脂肪酸甲酯(生物柴油)的工艺条件。试验结果表明,该转脂化反应的最佳操作条件:NaOH用量为大豆油量的1%、油醇摩尔比为1:6、搅拌时间为50min、反应温度为50~60℃、水的含量必须控制在油重的0.1%以下。  相似文献   

11.
A review on biodiesel production using catalyzed transesterification   总被引:1,自引:0,他引:1  
Biodiesel is a low-emissions diesel substitute fuel made from renewable resources and waste lipid. The most common way to produce biodiesel is through transesterification, especially alkali-catalyzed transesterification. When the raw materials (oils or fats) have a high percentage of free fatty acids or water, the alkali catalyst will react with the free fatty acids to form soaps. The water can hydrolyze the triglycerides into diglycerides and form more free fatty acids. Both of the above reactions are undesirable and reduce the yield of the biodiesel product. In this situation, the acidic materials should be pre-treated to inhibit the saponification reaction. This paper reviews the different approaches of reducing free fatty acids in the raw oil and refinement of crude biodiesel that are adopted in the industry. The main factors affecting the yield of biodiesel, i.e. alcohol quantity, reaction time, reaction temperature and catalyst concentration, are discussed. This paper also described other new processes of biodiesel production. For instance, the Biox co-solvent process converts triglycerides to esters through the selection of inert co-solvents that generates a one-phase oil-rich system. The non-catalytic supercritical methanol process is advantageous in terms of shorter reaction time and lesser purification steps but requires high temperature and pressure. For the in situ biodiesel process, the oilseeds are treated directly with methanol in which the catalyst has been preciously dissolved at ambient temperatures and pressure to perform the transesterification of oils in the oilseeds. This process, however, cannot handle waste cooking oils and animal fats.  相似文献   

12.
Biodiesel was developed from a novel nonedible oil source, namely Cyprinus carpio fish oil. The acid value of fish oil was very low (0.70 mg KOH/g oil, 0.35 free fatty acid content). As a result, biodiesel was produced through a one-step transesterifcation process, i.e. alkali-catalyzed transesterification with methanol. The optimal conditions for producing biodiesel from fish oil were investigated. The highest biodiesel yield (97.22% ~ 96.88% w/w ester content) was obtained under optimum conditions of 0.75% KOH w/w, 7:1 methanol to oil molar ratio, 60°C reaction temperature and 60-minute duration. Properties of the produced biodiesel as well as its blends with petro-diesel fulfilled the standard limits as prescribed by ASTM D6751 and EN 14214 indicating its suitability as a fuel for diesel engines.  相似文献   

13.
Biodiesel production via transesterification of waste cooking oil (WCO) with methanol using waste chicken bone-derived catalyst was investigated. The calcium carbonate content in the waste chicken bone was converted to calcium oxide (CaO) at a calcinations temperature of 800°C. The catalysts were prepared by calcination at 300–800°C for 5 h and catalyst characterization was carried out by X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) surface area measurement. CaO was used as catalyst for biodiesel production. The results of the optimization imply that the catalyst concentration of 3.0 wt%, methanol to oil ratio of 3:1, and reaction temperature of 80°C for 3 h provide the maximum values of yield in methyl ester production. Reusability of the catalyst from calcined waste chicken bone was studied for four times, with a good yield.  相似文献   

14.
This paper focuses on the use of kusum and sal oils found abundantly in India, yet unexplored for biodiesel production. The fatty acid profiles of the feedstocks suggest that sal oil has 56.8% saturated fatty acid whereas kusum oil has 34.8%. The kinematic viscosities of methyl ester of sal and kusum oils were higher and the calorific values were lower than those of diesel. The oxidation stability of both the esters is more than 6 h. The physicochemical properties of the two esters were within permissible limits of ASTM standard. The blending of ester in diesel has resulted in better performance and lower emissions.  相似文献   

15.
The aim of this research is to present the possibilities of the use of non-edible oils in biodiesel production, to consider the various methods for treatment of non-edible oils and to emphasise the influence of the operating and reaction conditions on the process rate and the ester yield. Because of biodegradability and non-toxicity biodiesel has become more attractive as alternative fuel. Biodiesel is produced mainly from vegetable oils by transesterification. For economic and social reasons, edible oils should be replaced by lower-cost and reliable feedstock for biodiesel production, such as non-edible plant oils. In this work biodiesel is produced from neem and Karanja by using butanol, propanol, ethanol and methanol as alcohols and KOH and NaOH as alkali catalysts by the transesterification process. The aim of this research is to analyse the different reaction parameters such as catalyst concentration, type of catalyst, types of alcohol, alcohol to oil molar ratio, reaction time and reaction temperature on the yield of biodiesel from non-edible oils. The maximum yield obtained was 95% with Karanja as oil with methanol and KOH as alkali catalyst at oil to alcohol molar ratio of 6:1 in 1 h at 60°C. Special attention is paid to the possibilities of producing biodiesel from non-edible oils.  相似文献   

16.
This work determined the association between several parameters of biodiesel production from waste cooking oil (WCO) using waste bovine bone (WBB) as catalyst to achieve a high conversion to fatty acid methyl ester (%FAME). The effect of three independent variables was used as the optimum condition using response surface methodology (RSM) for maximizing the %FAME. The RSM analysis showed that the ratio of MeOH to oil (mol/mol), catalyst amount (%wt), and time of reaction have the maximum effects on the transform to FAME. Moreover, the coefficient of determination (R2) for regression equations was 99.19%. Probability value (P < 0.05) demonstrated a very good significance for the regression model. The optimal values of variables were MeOH/WCO ratio of 15.49:1 mol/mol, weight of catalyst as 6.42 wt%, and reaction time of 128.67 min. Under the optimum conditions, %FAME reached 97.59%. RSM was confirmed to sufficiently describe the range of the transesterification parameters studied and provide a statistically accurate estimate of the best transform to FAME using WBB as the catalyst.  相似文献   

17.
小桐油制备生物柴油的研究   总被引:12,自引:1,他引:11  
实验研究了以小桐子油为原料,采用循环气相酯化-酯交换-水蒸气蒸馏法制备生物柴油的工艺过程。着重研究了降低原料酸值以及酯交换过程的优化条件。试验结果表明。气相酯化法可在很短的时间内将原料的酸值降到酯交换对原料的酸值要求;酯交换反应的最佳操作条件为:甲醇用量为油重的20%,催化剂用量为油重的1%左右,反应温度为60—70℃,反应时间为90—120min。  相似文献   

18.
The objective of this paper is to study marine macroalgae as an alternative raw material for the biodiesel production. The obtained results show that biodiesel production from oil extracted from marine algae is feasible by transesterification. Oil extraction can be carried out simultaneously with the transesterification. To investigate the optimum reaction conditions, the reaction was carried out at various methanol to oil molar ratios, catalyst concentrations and reaction temperatures. The process yields 1.6–11.5% depending on the reaction conditions. Moreover, the properties of macroalgae transesterification residue after transesterification were analyzed, concluding that it is a suitable material for fuel pellets manufacturing.  相似文献   

19.
Diesel is extensively used in India, however, also contribute to pollution. In this study, important physico-chemical properties of different ternary blends of diesel, waste cooking oil (WCO) biodiesel and n-octanol, are evaluated. Diesel and D80+WCB20+nO20 blend have almost similar density, calorific value, cetane index and CFPP. However, blends have higher kinematic viscosity and flash point as compared to diesel. GC-MS test shows the presence of 51.3% saturated and 44.24% unsaturated fatty acids. FTIR analysis shows a strong peak of carbonyl band at 1741 cm?1 which indicates the presence of biodiesel. Ternary blends are found to be a promising alternative to petroleum diesel.  相似文献   

20.
In this study, two continuous processes for biodiesel production, alkali catalyzed process and solid acid catalyzed process, are discussed with the help of Aspen Plus. By comparing some economic indicators, it can be found that solid acid catalysis could be a good choice for investors in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号