首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the optimum temperature of operation of a solar concentrator and thus the maximum power obtained from a solar thermal power plant has been calculated. Results are plotted graphically and discussed.  相似文献   

2.
Usual size of parabolic trough solar thermal plants being built at present is approximately 50 MWe. Most of these plants do not have a thermal storage system for maintaining the power block performance at nominal conditions during long non-insolation periods. Because of that, a proper solar field size, with respect to the electric nominal power, is a fundamental choice. A too large field will be partially useless under high solar irradiance values whereas a small field will mainly make the power block to work at part-load conditions.This paper presents an economic optimization of the solar multiple for a solar-only parabolic trough plant, using neither hybridization nor thermal storage. Five parabolic trough plants have been considered, with the same parameters in the power block but different solar field sizes. Thermal performance for each solar power plant has been featured, both at nominal and part-load conditions. This characterization has been applied to perform a simulation in order to calculate the annual electricity produced by each of these plants. Once annual electric energy generation is known, levelized cost of energy (LCOE) for each plant is calculated, yielding a minimum LCOE value for a certain solar multiple value within the range considered.  相似文献   

3.
Advancing in the learning curve of solar thermal power plants (STPP) requires detailed analysis for reducing exergy losses in the energy conversion chain. This requirement should be applied to any configuration proposed for the solar field and the power block. The aim of this work is to perform this type of analysis for two ways of structuring the power plant. The first plant structure consists of a subdivision of the solar collector field into specialized sectors with specific goals conveying different requirements in temperature. The second plant structure is based on a dual thermal energy storage system with a defined hierarchy in the storage temperature. The subdivision of the solar field into different sectors reduces the exergy losses in the heating process of the working fluid. Moreover, the average temperature of the heat transfer fluid in the solar field decreases when it is compared to the conventional solar field, reducing this way the exergy losses in the collectors. The dual thermal energy storage system is devised for keeping the exergy input to the power block at its nominal level for long periods of time, including post‐sunset hours. One of the storage systems gathers a fluid heated up to temperatures above the nominal value and the second one is the classical one. The combination of both allows the manager of the plant to keep the nominal operation of the plant for longer periods than in the case of classical system. Numerical simulations performed with validated models are the basis of the exergy analyses. The configurations are compared to a reference STPP in order to evaluate their worth. Furthermore, the behaviour of the configurations is analysed to study the irreversibility of the included devices. Special attention is paid to the storage systems, as they are a key issue in both plant structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The design of a solar power tower plant involves the optimization of the heliostat field layout. Fields are usually designed to have all heliostats of identical size. Although the use of a single heliostat size has been questioned in the literature, there are no tools to design fields with heliostats of several sizes at the same time. In this paper, the problem of optimizing the heliostat field layout of a system with heliostats of different sizes is addressed. We present an optimization tool to design solar plants allowing two heliostat sizes. The methodology is illustrated with a particular example considering different heliostat costs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
In the present work, exergy analysis of a coal‐based thermal power plant is done using the design data from a 210 MW thermal power plant under operation in India. The entire plant cycle is split up into three zones for the analysis: (1) only the turbo‐generator with its inlets and outlets, (2) turbo‐generator, condenser, feed pumps and the regenerative heaters, (3) the entire cycle with boiler, turbo‐generator, condenser, feed pumps, regenerative heaters and the plant auxiliaries. It helps to find out the contributions of different parts of the plant towards exergy destruction. The exergy efficiency is calculated using the operating data from the plant at different conditions, viz. at different loads, different condenser pressures, with and without regenerative heaters and with different settings of the turbine governing. The load variation is studied with the data at 100, 75, 60 and 40% of full load. Effects of two different condenser pressures, i.e. 76 and 89 mmHg (abs.), are studied. Effect of regeneration on exergy efficiency is studied by successively removing the high pressure regenerative heaters out of operation. The turbine governing system has been kept at constant pressure and sliding pressure modes to study their effects. It is observed that the major source of irreversibility in the power cycle is the boiler, which contributes to an exergy destruction of the order of 60%. Part load operation increases the irreversibilities in the cycle and the effect is more pronounced with the reduction of the load. Increase in the condenser back pressure decreases the exergy efficiency. Successive withdrawal of the high pressure heaters show a gradual increment in the exergy efficiency for the control volume excluding the boiler, while a decrease in exergy efficiency when the whole plant including the boiler is considered. Keeping the main steam pressure before the turbine control valves in sliding mode improves the exergy efficiencies in case of part load operation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
This communication is based on exergy concept for the utilization of solar thermal energy in a Rankine cycle‐based fuel‐fired thermal power plant (FFTPP). It has been shown that solar thermal energy as an aided source for feed water preheating helps to reduce the exergy loss in feed water heater (FWH) of Rankine cycle and develops more work than that could have been produced in a solar thermal power plant (STPP). It has been found that this enhancement in work increases for low‐pressure FWHs. For further illustration, a case study has been carried out of a typical 50 kW STPP and a 220 MW FFTPP. The effect of utilizing the same input solar thermal energy of typical STPP, if used as an aided source in a 220 MW FFTPP for feed water preheating is investigated. The work output of STPP is 59.312 kW, while the extra work output of FFTPP by using solar thermal energy of STPP is 90.27 kW. It has been found that the efficiency of work conversion of aided solar thermal energy in FFTPP is higher than the efficiency of work conversion in STPP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper describes the influence of the solar multiple on the annual performance of parabolic trough solar thermal power plants with direct steam generation (DSG). The reference system selected is a 50 MWe DSG power plant, with thermal storage and auxiliary natural gas-fired boiler. It is considered that both systems are necessary for an optimum coupling to the electricity grid. Although thermal storage is an opening issue for DSG technology, it gives an additional degree of freedom for plant performance optimization. Fossil hybridization is also a key element if a reliable electricity production must be guaranteed for a defined time span. Once the yearly parameters of the solar power plant are calculated, the economic analysis is performed, assessing the effect of the solar multiple in the levelized cost of electricity, as well as in the annual natural gas consumption.  相似文献   

8.
This paper presents the model for optimal sizing of a Solar Thermal (ST) power plant with parabolic collectors, which operates with Pump Storage Hydroelectric (PSH), all for the purpose of providing full energy independence of an isolated consumer. The sustainability of such system is based exclusively on solar energy input (without hybridization with any fossil fuel), as a renewable and pure energy resource, and the use of hydro energy, due to the possibility of its continuous production of energy. The feasibility and characteristics of the ST-PSH power plant were tested on power supply of the Island of Vis in Croatia, and the results show that the proposed model describes the operation of the power plant very well. For average solar irradiation of about 1500 kW h/m2/a, precipitation 644 mm/a, evaporation 1444 mm/a, volume of PSH upper reservoir of 20 h m3, electric energy consumption of 18 GV A h/a and reserve in the system for 3-4 months, the obtained power of the ST power plant is 22 MW, which can produce unit value of the annual thermal energy of 459 kW h/m2/a and electric energy of 160 kW h/m2/a, while the total collector aperture in the observed case is about 16 ha. These results show that ST-PSH plants can be successfully applied on locations with relatively low irradiation, wherein the key element that ensures continuous production of energy is precisely the PSH technology that can in the best way, in economic-technical, and especially in ecological sense, balance the relatively large summer surpluses and winter energy shortages.  相似文献   

9.
张宝  吴方根 《节能》2004,(6):11-13
通过对国内外电厂热力系统节能理论发展现状全面细致的分析 ,发现现有节能理论的不足 ,指出需要进一步研究解决的几个问题。  相似文献   

10.
This paper presents a model based on the rough sets theory for the prediction of a feed pump failure on a steam block of thermal power plant. There are many parameters that can cause pump failure, and this model enables extraction of the most significant ones. Model creation is based on the empirical data collected during the operation of thermal power plant, which is a part of the largest system for electricity production in Serbia. The model provided an insight into the parameters that have the greatest influence on the operation of the feed pump, and can be applied to other elements of the thermal power plant and affect the overall increase in the safety of thermal power plant operation. The goal of implementation of a new model is to increase system reliability by reducing the number of failures, thus increasing operational safety of thermal power plants. This is in accordance with the provision of energy security by applying measures of Directive 2005/89/EU. According to the directive, it is necessary to ensure: a reliable, safe, efficient and quality power supply.  相似文献   

11.
As the installed capacity of wind power continues to increase, the problem of curtailed wind power is becoming serious in China, especially in the northern region during the winter heating season. To solve the problem of wind‐heat conflict during the heating period in the Three North area, an electric boiler with thermal storage (EBTS) is installed at the end of the grid where wind power is difficult to accommodate and using curtailed wind power to supply heat promotes local accommodation. In this paper, a multi‐objective optimization model of wind power accommodation based on the wind power–EBTS system for heating is established. The goals of maximizing wind power accommodation, minimizing the number of times EBTS must be adjusted, and minimizing operating costs are presented, and a bi‐level optimization scheme is designed. An improved multi‐objective particle swarm optimization algorithm is used to solve these functions, and an optimal compromise solution from the generated Pareto solution set is filtered using the fuzzy membership method. Based on actual data from a demonstration project in China's Jilin Province, the simulation results verify that this method can effectively reduce operating costs and improve wind power accommodation.  相似文献   

12.
In this study, efficiency analyses of the eleven lignite-fired, one hard coal-fired and three natural gas-fired state-owned thermal power plants used for electricity generation were conducted through data envelopment analysis (DEA). Two efficiency indexes, operational and environmental performance, were defined and pursued. In the calculation of the operational performance, main production indicators were used as input, and fuel cost per actual production (Y) was used as output (Model 1). On the other hand, in the calculation of the environmental performance, gases emitted to the environment were used as output (Model 2). Data envelopment analysis (DEA) is the main instrument for the measurement of relative performances of the decision making units with multiple inputs and outputs. Constant returns to scale (CRS or CCR) and variable returns to scale (VRS or BCC) type DEA models were used in the analyses. The relationship between efficiency scores and input/output factors was investigated. Employing the obtained results, the power plants were evaluated with respect to both the cost of electricity generation and the environmental effects.  相似文献   

13.
为了减少电站网尘排放的环境污染问题,兖矿集团兴隆庄煤泥热电厂在进行电厂除尘器改造后中,设计建造了公共烟道系统,采用该方法既避免了配套锅炉的停运问题,又提高了平时电站系统运行的灵活性,介绍了电站锅炉除尘器系统的改造方案,在改造后系统运行过程的实际经验,以及项目实施所得到的经济效益,结果表明,设立公共烟道的方法在具有多台机组的小电厂中值得推广使用。  相似文献   

14.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity.  相似文献   

15.
Exergetic analysis is without any doubt a powerful tool for developing, evaluating and improving an energy conversion system. In the present paper, two different cooling technologies for the power cycle of a 50 MWe solar thermal power plant are compared from the exergetic viewpoint. The Rankine cycle design is a conventional, single reheat design with five closed and one open extraction feedwater heaters. The software package GateCycle is used for the thermodynamic simulation of the Rankine cycle model. The first design configuration uses a cooling tower while the second configuration uses an air cooled condenser. With this exergy analysis we identify the location, magnitude and the sources or thermodynamic inefficiencies in this thermal system. This information is very useful for improving the overall efficiency of the power system and for comparing the performance of both technologies.  相似文献   

16.
In this paper, forced convection heat transfer nanofluid flow inside the receiver tube of solar parabolic trough collector is numerically simulated. Computational Fluid Dynamics (CFD) simulations are carried out to study the influence of using nanofluid as heat transfer fluid on thermal efficiency of the solar system. The three-dimensional steady, turbulent flow and heat transfer governing equations are solved using Finite Volume Method (FVM) with the SIMPLEC algorithm. The results show that the numerical simulation are in good agreement with the experimental data. Also, the effect of various nanoparticle volume fraction on thermal and hydrodynamic characteristics of the solar parabolic collector is discussed in details. The results indicate that, using of nanofluid instead of base fluid as a working fluid leads to enhanced heat transfer performance. Furthermore, the results reveal that by increasing of the nanoparticle volume fraction, the average Nusselt number increases.  相似文献   

17.
Dimityr Popov 《Solar Energy》2011,85(2):344-349
Global climate change urges immediate measures to be taken to limit greenhouse gas emission coming from the fossil fuel fired power plants. Solar thermal energy can be involved in different ways in existing power generation plants in order to replace heat produced by fossil fuels.Solar field feed water preheating is mainly discussed in this paper as an option for fast and feasible RES penetration. Rankine regenerative steam cycled power plant has been modelled with Thermoflow software. The plant model incorporates also a field with solar Fresnel collectors that directly heats boiler’s feed water. The proposed plant modification yields substantial fossil fuel input reduction. The best results can be obtained when the group of high pressure heaters is replaced and feed water temperature exceeds its original design value. The solar power generation share can reach up to 23% of the power plant capacity in this case, having efficiency higher than 39% for the best solar hour of the year.  相似文献   

18.
In this paper, by combining the equality differential increment theory (EDIT) with the equivalent polyhedron body (EPB) searching extremum strategy, a method of economical load dispatch for the steam turbine unit of the thermal power plant has been presented. Simultaneously, a method for the order of load shedding and the related optimal economic operational modes of each turbine unit in decreasing its load are ascertained. According to the methods, the results of the optimal economical dispatch of the peak loads, the order of load shedding and the related optimal economic operational modes of each turbine unit while decreasing the load of a certain thermal power plant have been obtained. These results are applied in the thermal unit, and its economic benefits are shown to be obviously higher than that of applying the relative efficiency of each turbine unit. The methods can be used as a reference for obtaining the optimum economical load dispatch for similar thermal power turbine units. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A typical 1000 MW pressurized water reactor nuclear power plant is considered for optimization. The thermodynamic modeling is performed based on the energy and exergy analysis, while an economic model is developed according to the total revenue requirement method. The objective function based on the exergoeconomic analysis is obtained. The exergoeconomic optimization process with 10 decision variables is performed using a hybrid stochastic/deterministic search algorithm namely as genetic algorithm. The results that are obtained using optimization process are compared with the base case system and the discussion is presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Solar steam power plant is the dominant technology in the category of solar thermal power systems. In steam power cycles, there is usually a couple of steam lines, extracted from medium-pressure and low-pressure turbines, to preheat the working fluid before the boiler. This although leads to an increase in the energy efficiency of the cycle, reduces the contribution of the turbine proportionally. Therefore, finding an alternative method of preheating the working fluid would be effective in further enhancement of the efficiency of the system. In this study, the feasibility of using solar collectors for the preheating process in a solar steam power plant is investigated. For this, parabolic trough solar collectors and evacuated tube solar collectors based on a wide range of different scenarios and configurations are employed. The plant is designed, sized and thermodynamically analyzed for a case study in Saudi Arabia where there is a large solar irradiation potential over the year. The results of the simulations show that, among all the considered scenarios, a power cycle aided by a set of parabolic trough collectors as the preheating unit is the best choice technically. This configuration leads to about 23% increased power generation rate and 6.5% efficiency enhancement compared to the conventional design of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号