首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reed (Phragmites australis), a commonly used macrophyte in the wetlands constructed for water purification, was investigated as a new biosorbent for the removal of Cu(2+), Cd(2+), Ni(2+), Pb(2+) and Zn(2+) from aqueous solution. The metal adsorption capacity of reed biomass was improved significantly by water-wash, base- and acid-treatment. The maximum sorption of NaOH-pretreated reed biomass was observed near neutral pH for Cu(2+), Cd(2+), Ni(2+) and Zn(2+), while that for Pb(2+) was from an acidic range of pH 4.0 or higher. The maximum metal adsorption capacity on a molar basis assumed by Langmuir model was in the order of Cu(2+)>Ni(2+)>Cd(2+)>Zn(2+)>Pb(2+). Reed biosorbent showed a very high adsorption affinity value, which helps predict its high ability to adsorb heavy metals at low concentration. Desorption of heavy metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after three cycles of adsorption-elution, the adsorption capacity was regained completely and the desorption efficiency of metal was maintained at around 90%.  相似文献   

2.
Evaluation of heavy metal removal from aqueous solution onto scolecite   总被引:3,自引:0,他引:3  
Bosso ST  Enzweiler J 《Water research》2002,36(19):4795-4800
Scolecite is a zeolite associated to basalts of the Parana Continental Igneous Province (PCIP South America). The potential of scolecite as a new material for heavy metal removal (Pb2+ Cu2+, Zn2+, Ni2+, Co2+ and Cd2+) from aqueous solutions is evaluated. The experiments were carried out by immersion of 0.5 g of sample in solutions containing the metal ions, and kept under constant agitation for 24h, at ambient temperature. The meq of cations retained per mass of scolecite was evaluated as a function of: initial concentration (5-60 mg L(-1)), pH (4-6), liquid/solid ratio (200, 1000 and 2000) and particle size. The results indicated a great affinity of scolecite for Cu2+ with a retention value of 130 microeq g(-1) at pH 6, Ci = 30 mg L(-1) and liquid/solid ratio of 200. In the same conditions, the maximum retention measured for the other ions were 64 microeq g(-1) (Zn2+), 56 microeq g(-1) (Pb2+), 31 microeq g(-1) (Ni2+), 7.8 microeq g(-1) (Co2+) and 3.2 microeq g(-1) (Cd2+). These values increase substantially when the L/S ratio is increased. The affinity of copper and lead for scolecite is discussed based on their free ionic forms (i.e., their hydrated bivalent ions) and their hydrolysis products. The remaining ions are retained as free ions.  相似文献   

3.
We have shown a possibility of using montmorillonite modified with polyethylenimine for the removal of ions of heavy metals (Co(II) and Ni(II) from aqueous solutions. It has been found that the employment of such a composite sorbent is promising for purification of medium- and highly-mineralized wastewaters with the neutral value of the pH. The complexation influence of the reagents on the purification process has been shown and determined a dose of a reagent for obtaining the maximum possible degree of purifying aqueous solutions.  相似文献   

4.
The growth of dense green seaweed mats of Ulva spp. is an increasing problem in estuaries and coasts worldwide. The enormous amount of Ulva biomass thus becomes a troublesome waste disposal problem. On the other hand, it has been revealed that nonliving seaweed biomass, particularly brown seaweeds, has a high capacity for assimilating heavy metals. In this study, the possibility of using Ulva seaweed biomass as a biosorbent for the removal of heavy metals was examined. After processing, the biomass material was very easy to separate from the aqueous solution using a mesh. The sorption capacity of Cd on Ulva biomass increased upon pretreatment with alkali solution. The outstanding function of the biosorbent was demonstrated at around pH 8. On the basis of the Langmuir isotherms of Cd, Zn and Cu using the alkali-pretreated biomass, the parameters q(m) and b were determined to be within the narrow range of 60-90 mg/g and 0.03-0.04 L/mg, respectively, for each metal. Given the q(m) and b values, Ulva seaweed is a good biosorbent material for removing heavy metals. In an experiment using artificial wastewater containing Cd, Zn, Cu, Cr and Ni, it was possible to remove each metal simultaneously using Ulva biomass. Adsorption by Ulva biomass is effective for the removal of heavy metals from wastewater.  相似文献   

5.
Cellulose/chitin beads for adsorption of heavy metals in aqueous solution   总被引:7,自引:0,他引:7  
Zhou D  Zhang L  Zhou J  Guo S 《Water research》2004,38(11):2643-2650
We successfully prepared the biodegradable cellulose/chitin beads by coagulating a blend of cellulose and chitin in 6 wt% NaOH/5 wt% thiourea aqueous solution with 5% H2SO4 as coagulant, and investigated the adsorption of heavy metals (Pb2+, Cd2+, Cu2+) from an aqueous solution on the beads by atomic absorption spectrophotometer. Batch adsorption experiments were carried out as a function of ion concentrations, initial pH, ionic strength, temperature, adsorption time and desorption time. The results revealed that the cellulose/chitin beads could adsorb effectively Pb2+, Cd2+ and Cu2+ ions, and the uptakes of Pb2+, Cd2+ and Cu2+ ions on cellulose/chitin beads were 0.33 mmol/g at pH0 4, 0.32 mmol/g at pH0 5 and 0.30 mmol/g at pH0 4, respectively. Experimental results also showed that the adsorption of these heavy metals was selective to be in the order of Pb2+ > Cd2+ > Cu2+ in a low ion concentration solution. The adsorption equilibrium time of these heavy metals on beads was 4-5 h, but the desorption time was 5-15 min. Moreover, these beads could be regenerated up to about 98% by treating with 1 mol/L HCl aqueous solution. The mechanisms for the removal of free heavy metal ions by cellulose/chitin beads was based on mainly complexation adsorption model, as well as a affinity of hydroxyl groups of the materials on metals. Therefore, we developed new environment-friendly beads prepared by a simple produce process for removal and recovery of heavy metals.  相似文献   

6.
Due to the excellent chelating properties of aminopolycarboxylic acid (APCAs), they can be used for the removal of metals from contaminated waters. This paper reviews the research results obtained for both commercial and self-prepared adsorbents functionalized with four most common APCAs: iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), and diethylenetriaminepentaacetic acid (DTPA). The structural characteristics and unique metal binding properties of these chelating adsorbents are presented. The theory of the adsorption phenomena is discussed based on the kinetics of adsorption, equilibrium adsorption isotherm models, and thermodynamic models. The most important applications of APCA-functionalized adsorbents are also described. APCA-functionalized adsorbents are found to be highly promising materials for metal removal from contaminated waters.  相似文献   

7.
The results of the removal of Cu (II) and Fe (III) heavy metals from individual, mixed solutions and natural water by means of hydrogels sorption are provided. Copolymer acrylic hydrogels and agar-agar were used. It was found that sorption of heavy metals occurs synchronously with the hydrogels swelling. The efficiency of heavy metals removal (up to 99% for individual solutions with the 2 mM concentration, and up to 95% for natural water) and strength of its retention are maximum for copolymers of acrylamide and acrylic acid.  相似文献   

8.
Environmental regulation, increased pressure on water resources and rising cost for wastewater discharges make wastewater treatment for recycling an essential investment for many industries. Ammonia is a major pollutant in many industrial and agricultural wastewaters, and its elimination is essential for wastewater to be reused or meeting local discharge standards. In this study, the removal of ammonia from dilute aqueous solution has been investigated using sweep gas and vacuum membrane distillation (SGMD and VMD). Factors that affect the separation process such as feed and air flow rates, vacuum degree and feed temperature have been investigated. Overall, mass transfer coefficients (Kov) were calculated, and the results indicated that Kov for VMD is higher than that for SGMD under similar operation. Overall, ammonia mass transfer coefficient up to 12.06 × 10?5 and 5.63 × 10?5 m/s can be achieved for VMD and SGMD, respectively. The ammonia removal efficiency was enhanced by increasing sweep gas flow rate or by decreasing downstream pressure.  相似文献   

9.
Heavy-metal removal from aqueous solution by fungus Mucor rouxii   总被引:18,自引:0,他引:18  
Yan G  Viraraghavan T 《Water research》2003,37(18):4486-4496
Biosorption of lead, cadmium, nickel and zinc by live and dead Mucor rouxii biomass treated with NaOH was studied over a range of pH. In the case of dead biomass, low pH resulted in a decrease in the biosorption capacity. At pH 3.0 or less, the inhibition of biosorption of metal ions took place. At pH 4.0 or higher, the biosorption of metal ions increased sharply. Ho's pseudo-second-order model described the biosorption kinetics better than the Lagergren model. Live biomass had high biosorption capacity, i.e. 35.69, 11.09, 8.46 and 7.75 mg/g at pH 5.0 for Pb(2+), Ni(2+), Cd(2+) and Zn(2+), respectively. The dead biomass adsorbed metal ions in the order of Pb(2+), Zn(2+), Cd(2+) and Ni(2+), with the biosorption capability of 25.22, 16.62, 8.36 and 6.34 mg/g at pH 5.0, respectively. At pH 6.0, the capacity of the dead biomass increased to 53.75, 53.85, 20.31 and 20.49 mg/g, respectively. For bi- or multi-metal ion adsorption, biosorption capacity of individual metal ion was reduced in the presence of other metal ions, but the total biosorption capacity increased, indicating the capability of M. rouxii biomass in adsorbing multi-metal ions. In addition, M. rouxii biomasses cultured with different media exhibited the same level of capacity to bind metal ions. Metal ions adsorbed by the biomass could be eluted effectively with HNO(3), while distilled water demonstrated negligible metal elution capability. Regeneration of the biomass with NaOH regained or enhanced the biosorption capacity even after five cycles of adsorption-elution-regeneration.  相似文献   

10.
Comprehensive electric-surface, adsorption, X-ray investigations of interaction between ions of heavy 3-d metals with the hydroxylapatite surface have been carried out within a broad range of the pH and concentration of electrolytes. At low concentrations of ions of heavy metals the values of their sorption are less than the amount of Ca2 exchange cations outgoing to the solution. At higher concentrations of ions of heavy metals one can observe a reverse phenomenon: the amount of ions being sorbed exceeds the amount of outcoming Ca2 ions. The paper provides an explanation for the phenomena being observed. It is shown that the interaction of the zinc chloride solution at low values of the pH with hydroxylapatite a new mineral??scholzite??is formed.  相似文献   

11.
12.
The decontamination of synthetic Pb(II), Zn(II), Cd(II), Ni(II) solutions was investigated, using silica gels chemically modified with poly(ethyleneimine) (PEI) as sorbents. Two families of sorbents, i.e. silica/PEI and crosslinked silica/PEI, were prepared and characterized. Then the removal of metal ions from synthetic aqueous solutions was studied by static tests. They revealed that the sorption capacities depend on the pH, the initial concentration and to some extent on the nature of the metal. The recovery of the metal cations from the saturated sorbents was possible with diluted acid, only for the crosslinked supports. In this case, the regeneration and reuse without sorption decrease, was demonstrated. The presence of other cations (as Na(+), Ca(2+)) and metals does not affect the sorption capacities.  相似文献   

13.
The amidoxime adsorbent was prepared by radiation grafting of acrylonitrile on non-woven polyethylene followed by chemical treatment with hydroxyl amine hydrochloride. The prepared amidoxime adsorbent was used for adsorption of methyl orange (MO) from aqueous solution. The effect of different conditions such as contact time, pH and initial metal ion concentration on the adsorption capacity was investigated. Pseudo-first-order and pseudo-second-order equations were used to study the kinetic adsorption data. A Langmuir isotherm model was used to investigate the equilibrium experimental data. The monolayer saturation adsorption capacity of the adsorbent for MO, as determined from the Langmuir equation, was 142 mg/g of the adsorbent. Moreover, desorption and reuse of the adsorbent film showed satisfactory results. Large-scale recycling of the adsorbent will reduce the production cost, and thereby make the practical application of the adsorbent economically feasible.

Abbreviations: Acrylonitrile - AN, Polyethylene - PE, Methylene Orange - MO  相似文献   


14.
Arsenic removal from an aqueous solution by a modified fungal biomass   总被引:2,自引:0,他引:2  
Non-viable fungal biomass of Aspergillus niger, coated with iron oxide was investigated for its potential to remove arsenic from an aqueous solution. A. niger biomass coated with iron oxide showed maximum removal (approximately 95% of As(V) and 75% of As(III)) at a pH of 6. No strong relationship was observed between the surface charge of the biomass and arsenic removal.  相似文献   

15.
The removal of a reactive color, Cibacron Yellow LS-R, from aqueous solutions by adsorption onto hydrotalcite particles is investigated using batch rate experiments. Measurements are performed at various initial color concentrations, solid loads, pH values and ionic backgrounds (dissolved NaCl). The speed of agitation and the temperature inside the batch adsorber are also varied within a practical range of values. It is shown that the sorption capacity is relatively high for most experimental conditions so hydrotalcite may be considered as a suitable sorbent for this application. The probable mechanism of the process is investigated by a number of homogeneous and heterogeneous reaction kinetic models as well as diffusion kinetic models. It is found that no single kinetic model can fully describe the sorption process at all times. At least three independent rate-controlling mechanisms appear to compete each other and dominate the different stages of sorption.  相似文献   

16.
The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals.  相似文献   

17.
Tsai LJ  Yu KC  Chen SF  Kung PY 《Water research》2003,37(10):2449-2457
The aim of this study was to determine the effect of temperature on the solubilization of heavy metals from contaminated river sediment by sulfur oxidizing bacteria taken from Ell-Ren River sediment. Of three temperatures tested (25 degrees C, 37 degrees C and 55 degrees C), pH decrease was greatest at 37 degrees C, indicating that, after acclimation, bacterial oxidizing activity is greatest at this temperature. At 55 degrees C, pH change was similar to that which occurred with no inoculum added. The increase in sulfates and high pH at 55 degrees C indicate that the indirect mechanism was not initiated at this temperature. Solubilization efficiency of total extractable Ni, Zn, Cu and Cr was high (>90%) at 37 degrees C, whilst that of Pb was only 60.4%. Except for Pb, the optimal temperature for solubilization of total extractable heavy metal was 37 degrees C. The order of average solubilization efficiency of total extractable heavy metals was Ni, Zn, Cu>Cr>Co, Pb. The solubilization efficiency of Pb and Co was markedly less than that of other heavy metals. Transfer of heavy metals between binding fractions was most apparent at 55 degrees C before and after bioleaching.  相似文献   

18.
The adsorption of Reactive Red 120 dye from aqueous solutions by using nano-alumina has been investigated. The batch adsorption studies were carried out to determine the impact of pH, contact time, concentration of dye, and the adsorbent dose on adsorption process. The maximum adsorption efficiency was observed at pH 3. However with an increase of the adsorbent dose, the dye removal efficiency increased, while the amount of dye adsorbed per unit mass (mg/g) decreased. A pseudo-second-order model best described the adsorption kinetics of the specified dye onto nano-alumina. In this case the Langmuir isotherm model appeared to be most suitable. Findings of the present study reveal that nano-alumina can be an effective adsorbent for the removal of Reactive Red 120 from aqueous solutions.  相似文献   

19.
20.
Kim SO  Moon SH  Kim KW  Yun ST 《Water research》2002,36(19):4765-4774
In order to remove toxic heavy metals from municipal wastewater sludges, the ex situ electrokinetic technique was studied at pilot scale. This study focused on the feasibility of the electrokinetic removal of heavy metals from sludge and the effectiveness of this technique on the variations of abiotic (physicochemical) and biotic (intracellular and extracellular) speciations of heavy metals using several analytical methods. Even though the sludge used was taken from a municipal wastewater treatment plant, the sludge contained relatively high concentrations of target metal contaminants (Cd = 6.8 mg/kg, Cr = 115.6 mg/kg, Cu = 338.7 mg/kg, and Pb = 62.8 mg/kg). The removal efficiencies of heavy metals were significantly dependent on their speciations in the sludge matrices. The electrokinetic removal efficiencies of abiotic heavy metals exceeded 70% for the mobile and weakly bound fractions, such as, the exchangeable and carbonate fractions and were lower than 35% for the strongly bound fractions, such as, the organic/sulfide and residual fractions. In the case of the biotic heavy metals, the removal efficiencies of the extracellular fractions were slightly higher than those of the intracellular fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号