首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rodent liver tumor formation can be promoted by certain barbiturates and this may involve their ability to inhibit hepatocyte gap junctional intercellular communication (GJIC). In order to address the mechanisms and specificity of action of barbiturates on hepatocyte gap junctions, we have compared the effects of liver tumor-promoting barbiturates (phenobarbital, sodium barbital and amobarbital: PB, SB and AB, respectively) and a non-liver tumor-promoting barbiturate (barbituric acid: BA) on primary cultured rat hepatocyte GJIC and connexin32 (Cx32) expression after short (1-24 h) and long (2-14 days) treatment. GJIC was evaluated by fluorescent dye microinjection (dye-coupling); Cx32 expression was monitored by Northern blot, Western blot and immunohistochemistry. Both parameters were maintained at high levels over 14 days by coculture of the cells with WB-F344 rat liver epithelial cells in the presence of dexamethasone. Treatment with PB (2 mM) for 1 h sharply reduced dye-coupling from approximately 90-30%, but the cells fully recovered by 24 h. No inhibition was seen with the other barbiturates over this 1-day treatment period. Longer treatments (2-14 days) with the promoters PB, SB and AB, however, gradually reduced hepatocyte dye-coupling to approximately 30-50%. The non-promoter, BA, did not affect hepatocyte GJIC. These decreases in hepatocyte dye-coupling occurred without changes in Cx32 or gap junction expression. Dye-coupling of WB-F344 cells and expression of their predominant gap junction protein, connexin43 (Cx43), were also not affected. Thus, the inhibition of GJIC was specific to liver tumor promoting barbiturates in hepatocytes, was time-dependent and was not due to altered Cx32 expression.  相似文献   

2.
In the adult rat hepatocyte, gap junction proteins consist of connexin 32 (Cx32) and connexin 26 (Cx26). Previously, we reported that both Cx32 and Cx26 were markedly induced and maintained in primary cultures of adult rat hepatocytes. The reappearing gap junctions were accompanied by increases in both the proteins and the mRNAs, and they were well maintained together with extensive gap junctional intercellular communication (GJIC) for more than 4 weeks. In the present study, we examined the cellular location of the gap junction proteins and the structures in the hepatocytes cultured in our system, using confocal laser microscopy and immunoelectron microscopy of cells processed for Cx32 and Cx26 immunocytochemistry and freeze-fracture analysis. In immunoelectron microscopy, the size of Cx32-immunoreactive gap junction structures on the plasma membrane increased with time of culture, and some of them were larger than those in liver sections in vivo. Freeze-fracture analysis also showed that the size of gap junction plaques increased and that the larger gap junction plaques were composed of densely packed particles. These results suggest that in this culture system, not only the synthesis of Cx proteins but also the size of the gap junction plaques was increased markedly. In the adluminal lateral membrane of the cells, Cx32-immunoreactive lines were observed and many small gap junction plaques were closely associated with a more developed tight junction network. In the basal region of the cells, small Cx32- and Cx26-immunoreactive dots were observed in the cytoplasm and several annular structures labeled with the antibody to Cx32 were observed in the cytoplasm. These results indicated the formation and degradation of gap junctions in the cultured hepatocytes.  相似文献   

3.
Gap-junctional intercellular communication (GJIC) in 20 primary human liver tumors with different degrees of malignancy has been studied at the functional and molecular levels. When GJIC capacity was determined by dye-transfer assay performed directly with freshly removed tumor tissue, significant reduction was found in all samples, regardless of their morphology. In addition, a selective lack of GJIC between tumor and surrounding non-tumorous cells was observed in some cases, probably due to the physical separation between them resulting from encapsulation of tumors. There was, however, no essential change in the level of expression of the major liver gap-junction protein, connexin (cx) 32, in liver tumors as measured by Northern and Western blot analyses. Immunohistochemical study revealed aberrant localization of cx 32 in the majority of malignant liver tumors. Instead of cytoplasmic membrane localization at intercellular contacts, cx 32 was detected mainly either intracytoplasmically or in plasma membrane free from contact with other cells. We did not detect any mutation in the coding sequence of the cx 32 gene from any of the human liver tumors we tested. Thus it is likely that the aberrant localization of cx 32 in tumor cells is due to disruption of the mechanisms for establishment of this protein into gap-junction plaques, rather than to structural abnormality of the cx 32 protein itself. Another member of the connexin family, cx 43, not detectable in non-tumorigenic hepatocytes, was expressed in several tumors, especially in invasive areas, but was detected in only a few tumor cells and was localized intracytoplasmically, suggesting that cx 43 protein is not involved in GJIC in the tumors.  相似文献   

4.
In the present study, we determined in detail the changes of liver gap junctions, connexin 26 (Cx26), and connexin 32 (Cx32), during DNA synthesis and redifferentiation of hepatocytes in vitro. We used primary rat hepatocytes that expressed the liver gap junction proteins, which were cultured in the medium containing epidermal growth factor (EGF) with 2% dimethylsulfoxide (DMSO) and 10(-7) mol/L glucagon (a DMSO culture system), as we previously reported. In the present cultures, almost confluent hepatocytes cultured in the medium containing EGF with 2% DMSO and 10(-7) mol/L glucagon, underwent a nearly synchronous wave of DNA synthesis induced by the removal of 2% DMSO and 10(-7) mol/L glucagon, and the addition of 10 mmol/L nicotinamide, after which the DNA synthesis was completely re-inhibited by the re-addition of 2% DMSO and 10(-7) mol/L glucagon. During stimulation of DNA synthesis, both Cx26 and Cx32 messenger RNA (mRNAs) in hepatocytes transiently increased in the G1 phase and then markedly decreased before the onset of the S phase, while only Cx26 messenger RNA (mRNA) increased slightly in the S/M phase. Furthermore, before the onset of the S phase, a disappearance of both Cx26 and Cx32 immunoreactivities and gap junction plaques were observed. Gap junctional intercellular communication (GJIC), as measured by lucifer yellow, which indicated the function of Cx32, decreased markedly from before the onset of the S phase. GJIC measured by propidium iodide, which indicated the function of Cx26, decreased from before the onset of the S phase and then increased slightly in the S/M phase. During the re-inhibition after the stimulation of DNA synthesis, Cx32 mRNA, but not Cx26 mRNA, rapidly returned to the pretreatment control level. Cx32 immunoreactivity and gap junction plaques also recovered. However, the recovery of GJIC measured by lucifer yellow was later than that of Cx32 expression. These results indicated the different changes of expression and function of Cx26 and Cx32 in the hepatocytes during stimulation and re-inhibition of DNA synthesis. This culture system should be useful as a model in which to study liver gap junctions during hepatocyte growth and differentiation in vitro.  相似文献   

5.
The subcellular distribution in rat liver and the topography in intracellular and plasma membranes of connexin 32, a major protein component of gap junctions, was studied using sequence-specific anti-peptide antibodies generated to extracellular and intracellular domains of the protein. The distribution of connexin 32 in liver analyzed using SDS-polyacrylamide gel electrophoresis and Western blotting showed the relative protein levels in the subcellular fractions to be: lateral plasma membranes > Golgi membranes > sinusoidal plasma membranes > lysosomes. Low amounts of connexin 32 were detected in microsomes, endosomes, and bile canalicular plasma membranes. Six highly conserved cysteine residues are located in the amino acid sequences comprising the two extracellular loops of all connexins thus far isolated, and these loops are positioned to extend the channel in the lipid bilayers across the intercellular region of the gap junction. In the present work, the intramolecular disulfide bonds linking the extracellular loops in gap junctions were shown to be present in connexins located in plasma membranes, Golgi, and a microsomal fraction, and it was concluded that the disulfide linkages were formed in the endoplasmic reticulum. In addition, immature configurations of connexin 32, probably occurring during membrane insertion, were detected in liver microsomal fractions. The results contribute to charting of the biogenetic routes followed by connexins in hepatocytes and the general mechanisms of gap junction assembly.  相似文献   

6.
Gap junctions connect neighboring cells via intercellular channels composed of connexins (Cx). Connexin 32 (Cx32) is the main connexin in hepatocytes. Gap junctions propagate a signal from periportal to perivenous hepatocytes generated by electrical stimulation of sympathetic liver nerves. Therefore, it was the aim of this study to examine the involvement of hepatocellular gap junctions in hormonal regulation. In perfused livers from wild-type mice and Cx32-deficient mice, the stimulation of glucose release by varying noradrenaline and glucagon concentrations was investigated. At saturating hormone concentrations, glucose release was the same in wild-type and Cx32-deficient livers. However, glucose output was significantly smaller in Cx32-deficient than wild-type livers at half-maximally effective hormone concentrations. Because the two hormones circulate at less than half-saturating concentrations and because they are degraded during passage of blood through the liver, they lose efficiency from the periportal to the perivenous zone. In wild-type livers, this decrease in efficiency can be partially compensated by intercellular signal propagation through gap junctions, resulting in higher hormone actions than in Cx32-deficient livers. It is concluded that gap junctions are not only involved in intercellular propagation of nervous, but also of hormonal signals from periportal to perivenous hepatocytes.  相似文献   

7.
8.
The effects of fenvalerate, esfenvalerate, permethrin, cypermethrin, deltamethrin, p-chlorophenylisovaleric acid (CPIA, major metabolite of fenvalerate) and DDT, a liver tumor promoter, on gap junctional intercellular communication (GJIC) were examined in Balb/c3T3 cells by dye-transfer assay. Separate groups of Balb/c3T3 cells were exposed to the chemicals for 1 day. On the following day, GJIC was measured by counting the number of dye-transferring cells per injection of Lucifer Yellow under a fluorescent microscope. Fenvalerate, esfenvalerate, permethrin, cypermethrin, deltamethrin and DDT inhibited GJIC at noncytotoxic concentrations, while CPIA did not inhibit GJIC even at a cytotoxic concentration. It is concluded that the examined pyrethyroid insecticides, but not a metabolite, have inhibitory effects on GJIC in Balb/c3T3 cells.  相似文献   

9.
Methylmercury (MeHg) causes renal injury in addition to central and peripheral neuropathy. To clarify the mechanism of nephrotoxicity by MeHg, we investigated the effect of this compound on intercellular communication through gap junction channels in primary cultures of rat renal proximal tubular cells. Twenty minutes after exposure to 30 microM MeHg, gap junctional intercellular communication (GJIC), which was assessed by dye coupling, was markedly inhibited before appearance of cytotoxicity. When the medium containing MeHg was exchanged with MeHg-free medium, dye coupling recovered abruptly. However, the dye-coupling was abolished again 30 min after replacement with control medium, and the cells were damaged. Intracellular calcium concentration, [Ca2+]i, which modulates the function of gap junctions, significantly increased following exposure of the cells to 30 microM MeHg and returned to control level following replacement with MeHg-free medium. These results suggest that the inhibiting effect of MeHg on GJIC is related to the change in [Ca2+]i, and may be involved in the pathogenesis of renal dysfunction.  相似文献   

10.
The hepatocytes in the mature normal liver are tightly coupled through gap junctions, except during compensatory hyperplasia (regeneration) after partial hepatectomy when the gap junctions become down-regulated. The significance of this down-regulation has been a long-standing enigma. The present study of hepatocytes in primary culture and in the regenerating liver aimed at defining the relationship, if any, between hepatocyte gap junctional communication and proliferation. Gap junctional down-regulation in the regenerating liver appeared to be a specific phenomenon because desmosomes and the surface contact area between neighboring hepatocytes remained constant. All agents and conditions (dexamethasone in vivo; dexamethasone, cyclic adenosine monophosphate, serum, and high cell density in vitro) delaying gap junctional down-regulation also increased the lag before the cells reached competence to enter S phase. This raised the possibility that hepatocyte DNA replication was inhibited through preservation of gap junctions. However, we disproved this assumption by showing that the DNA replication (more specifically the G1/S transition rate constant) was inhibited even in hepatocytes completely devoid of gap junctional communication. The teleological advantage of linking gap junctional down-regulation to hepatocyte G1 progression therefore may not be to trigger DNA replication but to ensure that proliferating hepatocytes and hepatocytes responsible for liver-specific metabolic functions maintain separate pools of metabolites and signaling molecules.  相似文献   

11.
Calcium-mobilizing agonists induce intracellular Ca2+ concentration ([Ca2+]i) changes thought to trigger cellular responses. In connected cells, rises in [Ca2+]i can propagate from cell to cell as intercellular Ca2+ waves, the mechanisms of which are not elucidated. Using fura2-loaded rat hepatocytes, we studied the mechanisms controlling coordination and intercellular propagation of noradrenaline-induced Ca2+ signals. Gap junction blockade with 18 alpha-glycyrrhetinic acid resulted in a loss of coordination between connected cells. We found that second messengers and [Ca2+]i rises in one hepatocyte cannot trigger Ca2+ responses in connected cells, suggesting that diffusion across gap junctions, while required for coordination, is not sufficient by itself for the propagation of intercellular Ca2+ waves. In addition, our experiments revealed functional differences between noradrenaline-induced Ca2+ signals in connected hepatocytes. These results demonstrate that intercellular Ca2+ signals in multicellular systems of rat hepatocytes are propagated and highly organized through complex mechanisms involving at least three factors. First, gap junction coupling ensures coordination of [Ca2+]i oscillations between the different cells; second, the presence of hormone at each hepatocyte is required for cell-cell Ca2+ signal propagation; and third, functional differences between adjacent connected hepatocytes could allow a 'pacemaker-like' intercellular spread of Ca2+ waves.  相似文献   

12.
In order to examine the relevance of alteration of gap-junctional intercellular communication (GJIC) to chemopreventive activity against carcinogenesis, the effects of alpha- and beta-carotene as well as lycopene, typical chemopreventive carotenoids, on cell coupling via gap junctions in rat liver in vivo were studied using a direct functional dye-transfer technique. We found that all three test compounds given at a dose of 50 mg/kg-body weight (b.w.) daily, 5 times by gavage, inhibited GJIC, while similar treatment with 5 mg/kg b.w. caused enhancement, especially in the beta-carotene- and lycopene-treated groups. At the dose level of 0.5 mg/kg b.w., the three compounds had no effect. The findings show that all three agents differentially modulate GJIC depending on the dose, with beneficial effects on cell communication only detected at the one dose. The result suggests that determination of the dose of chemicals to be used is crucial for human intervention studies.  相似文献   

13.
OBJECTIVES: To elucidate signal transduction pathways regulating expression of myocardial gap junction channel proteins (connexins) and to determine whether mediators of cardiac hypertrophy might promote remodeling of gap junctions, we characterized the effects of angiotensin II on expression of the major cardiac gap junction protein connexin43 (Cx43) in cultured neonatal rat ventricular myocytes. BACKGROUND: Remodeling of the distribution of myocardial gap junctions appears to be an important feature of anatomic substrates of ventricular arrhythmias in patients with heart disease. Remodeling of intercellular connections may be initiated by changes in connexin expression caused by chemical mediators of the hypertrophic response. METHODS: Cultures were exposed to 0.1 micromol/liter angiotensin II for 6 or 24 h, and Cx43 expression was characterized by immunoblotting, confocal microscopy and electron microscopy. RESULTS: Immunoblot analysis revealed a twofold increase in Cx43 content in cells treated for 24 h with angiotensin II (n=4, p < 0.05). This response was inhibited by the presence of 1.0 micromol/liter losartan, an AT1-receptor blocker. Confocal and electron microscopy demonstrated enhanced Cx43 immunoreactivity and increases in the number and size of gap junction profiles in cells exposed to angiotensin II for 24 h. These effects were also blocked by losartan. Immunoprecipitation of Cx43 from cells metabolically labeled with [35S]methionine demonstrated 2.4- and 2.9-fold increases in Cx43 radioactivity after 6 and 24 h exposure to angiotensin II, respectively (p < 0.03 at each time point). CONCLUSIONS: Angiotensin II up-regulates gap junctions in cultured neonatal rat ventricular myocytes by increasing Cx43 synthesis. Signal transduction pathways activated by angiotensin II under pathophysiologic conditions could initiate remodeling of conduction pathways, leading to the development of anatomic substrates of arrhythmias.  相似文献   

14.
Gap junctions regulate a variety of cell functions by creating a conduit between two apposing tissue cells. Gap junctions are unique among membrane channels. Not only do the constituent membrane channels span two cell membranes, but the intercellular channels pack into discrete cell-cell contact areas forming in vivo closely packed arrays. Gap junction membrane channels can be isolated either as two-dimensional crystals, individual intercellular channels, or individual hemichannels. The family of gap junction proteins, the connexins, create a family of gap junctions channels and structures. Each channel has distinct physiological properties but a similar overall structure. This review focuses on three aspects of gap junction structure: (1) the molecular structure of the gap junction membrane channel and hemichannel, (2) the packing of the intercellular channels into arrays, and (3) the ways that different connexins can combine into gap junction channel structures with distinct physiological properties. The physiological implications of the different structural forms are discussed.  相似文献   

15.
16.
To increase our knowledge of the role of peptide hormone stimulation in gap junction protein expression and adrenal cortical cell function, primary rat adrenal cortical cells were treated with adrenocorticotropin, and gap junction proteins were measured. Immunocytochemistry and western blot analysis were used to detect and characterize gap junction type and distribution. The gap junction protein, connexin 43 (alpha 1), was detected. Analysis of six connexin protein types did not reveal gap junction species other than alpha 1. Cells of the inner adrenal cortical zones, zonae fasciculata and reticularis, were demonstrated to have the highest number of gap junctions per cell in the adrenal gland. Adrenal cell cultures enriched for the two inner cortical adrenal zones were established and demonstrated also to express alpha 1 gap junction protein. Adrenocorticotropin (40 mUnits/ml) and dibutyryl cyclic adenosine monophosphate (1 mM) treatments increased alpha 1 gap junction protein levels and decreased cell proliferation rates in the cell cultures. The results are consistent with the hypothesis that gap junction expression can be regulated by adrenocorticotropin acting through the second messenger cyclic adenosine monophosphate. It can be suggested that gap junction expression in the adrenal gland may be under hormonal influence, and that gap junctions serve as passage for movement of molecules involved in control of cell proliferation.  相似文献   

17.
Gap junctions are clusters of intercellular channels between adjacent cells. The channels are formed by the direct apposition of oligomeric transmembrane proteins, permitting the direct exchange of ions and small molecules (< 1 kDa) between cells without involvement of the extracellular space. Vertebrate gap junction channels are composed of oligomers of connexins, an enlarging family of proteins consisting of perhaps > 20 members. This article reviews recent advances in understanding the structure of intercellular channels and describes the diverse functions attributable to gap junctions as a result of insights gained from targeted gene disruptions in mice and genetic disease in humans.  相似文献   

18.
Intercellular communication is mediated by specialized cell-cell contact areas known as gap junctions. Connexins are the constitutive proteins of gap junction intercellular channels. Various cell expression systems are used to express connexins and, in turn, these expression systems can then be tested for their ability to form functional cell-cell channels. In this review, expression of murine endogenous connexins in primary cells and established cell lines is compared with results obtained by expression of exogenous connexins in Xenopus oocytes and cultured mammalian cells. In addition, first reports on characterization of connexin-deficient mice are discussed.  相似文献   

19.
Connexin 46 (cx46), when expressed in Xenopus oocytes, not only forms typical gap junction channels between paired cells but also forms open gap junction hemichannels in the plasma membrane of single cells. The gap junction hemichannels share properties with complete gap junction channels in terms of permeability and gating. Here we characterize the gate that closes hemichannels in response to increased calcium concentration with whole-cell and single-channel records. The channels close within a narrow range of extracellular calcium concentrations (1-2 mM) which includes the calcium concentration prevailing in the primary site of cx46 expression, the lens. The effect of calcium on the channels is determined by voltage. A cysteine mutant of cx46, cx46L35C, was used to determine the localization of the gate. Experimental evidence suggests that position 35 is pore lining. The localization protocol tests the accessibility of position 35 for thiol reagents applied extra- or intracellularly to the channel closed by calcium. Channel closure by calcium excluded the thiol reagent from the outside but not from the inside. Consequently, the gate results in a regional closure of the pore and it is located extracellular to the position 35 of cx46. The present data also suggest that the cx46 gap junction hemichannel may exert a physiological function in the lens. Considering the association of calcium with cataract formation, it is feasible that misregulation of cx46 gap junction hemichannels could be a cause for cataract.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号