首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
森林覆盖区积雪的提取精度很低,由于植被冠层的遮挡,冠层下的积雪很难被提取出来。基于Landsat 8OLI数据,针对玛纳斯河流域下游有大面积森林覆盖的特点,通过传统的积雪指数法,结合NDVI数据的积雪指数法和面向对象图像特征法分别提取积雪面积。结果表明:1传统的NDSI和S3积雪指数法无法较好地提取出森林覆盖下的积雪,提取精度分别为85.23%和87.54%。这两种方法适用于空间尺度较大、植被覆盖面积较大的区域,并不适合所选研究区;2结合NDVI数据后的NDSI、S3积雪指数模型能大大提高森林覆盖下的积雪面积,提取精度分别达到91.47%和90.60%。在影像空间分辨率较高,流域尺度较小,林区覆盖较多的情况下可采用此方法提取积雪;3随着海拔的升高,地形阴影影响逐渐增大,NDVI辅助积雪指数方法提取林区覆盖下积雪面积逐渐减小。因此采用光谱、纹理和空间信息结合的面向对象图像特征方法提取积雪,能够较好地识别出受地形影响下的雪像元,精度达到89.75%,可以满足实际应用的需求。  相似文献   

2.
像元尺度上积雪面积比例与雪水当量的关系是将积雪遥感面积数据引入水文模型的有效手段。以冰沟流域为例,利用合成孔径雷达ENVISAT-ASAR数据反演得到积雪面积、雪水当量信息,分析了500m像元尺度上积雪面积比例与雪水当量的关系。结果表明:1在积雪面积比例未达到全覆盖饱和状态,雪水当量和积雪面积比例呈正相关关系,积雪面积比例控制着雪水当量的最大值,但由于受到地形的影响,关系不显著;2当考虑地形因子影响,即将坡度、坡向、海拔、积雪面积比例与雪水当量进行多元线性回归,回归系数的显著性水平均小于0.05,相关系数(r)达到0.841。因此,在高分辨率地形因子已知的情况下,结合遥感积雪数据,可建立良好的积雪面积比例和雪水当量之间的关系,有利于高分辨率积雪面积比例数据在寒区分布式水文模型中的应用。  相似文献   

3.
积雪反照率是影响地—气辐射能量平衡的重要地表参数之一。结合青藏高原的积雪消融特点,研究了2018年2~3月青藏高原28个观测点的反照率空间差异,并分析了影响反照率的表层积雪参数,结果表明:融雪期青藏高原的积雪反照率均值为0.72,高原东北部的青海地区观测点的反照率均值高于西藏南部地区,不同区域积雪反照率值内部差异不同;西藏南部地区的水汽来源和较快的积雪消融过程导致该区域反照率低于青海地区;地表被斑状雪覆盖的观测点具有较低的反照率值(小于0.5);多云天气条件下,短时间的云层遮挡对反照率影响很小,积雪反照率几乎保持不变。  相似文献   

4.
积雪反照率是影响地—气辐射能量平衡的重要地表参数之一。结合青藏高原的积雪消融特点,研究了2018年2~3月青藏高原28个观测点的反照率空间差异,并分析了影响反照率的表层积雪参数,结果表明:融雪期青藏高原的积雪反照率均值为0.72,高原东北部的青海地区观测点的反照率均值高于西藏南部地区,不同区域积雪反照率值内部差异不同;西藏南部地区的水汽来源和较快的积雪消融过程导致该区域反照率低于青海地区;地表被斑状雪覆盖的观测点具有较低的反照率值(小于0.5);多云天气条件下,短时间的云层遮挡对反照率影响很小,积雪反照率几乎保持不变。  相似文献   

5.
祁连山区积雪类型丰富、判识复杂,是中国积雪研究的典型区域。因此,精确地监测祁连山区积雪面积变化及其时空演变,对祁连山区生态环境和社会经济发展等具有重要意义。FY-3C MULSS利用多阈值积雪指数模型提供全球日积雪覆盖产品,FY-4A AGRI传感器每15~60 min提供一景覆盖全球的多光谱影像。基于FY-4A AGRI高时间分辨率的特征,构建适合于FY-4A号数据的动态多阈值多时相云隙间积雪识别方法,很大程度上减小了云对光学数据识别积雪造成的影响,并结合FY-3C MULSS积雪覆盖日产品较高空间分辨率的优势,融合得到去除云后的FY3C4积雪覆盖数据。利用Landsat 8 OLI卫星数据对融合后的积雪数据进行对比验证,结果表明融合FY-3C和FY-4A后的数据能更好地判识祁连山区的积雪覆盖情况。以MODIS MOD10A2积雪产品为真实值,随机检验了2018年3月~2019年3月融合后数据的积雪判识精度,发现无云情况下方法的总体精度可达到85.25%。进一步研究发现祁连山区积雪面积在海拔、气候和坡向等因素的影响下时空分布极不均匀,总体呈现出冬春季节大于夏秋季节,以及东部积雪面积大于西部积雪面积的特征。  相似文献   

6.
雪盖卫星遥感信息的提取方法探讨   总被引:10,自引:0,他引:10       下载免费PDF全文
着重论述了从卫星遥感资料中提取雪盖信息的一些方法,结果表明,利用积雪阈值参数从NOAA/AVHRR图象中提取雪盖信息方法和利用积雪指数(NDSI)从陆地卫星TM图象中提取雪盖面积的技术,以及利用NOAA/AVHRR和TM信息复合的技术,可提高信息获取的精度,具有实用价值。  相似文献   

7.
鉴于近年来关于雪水当量的研究成果大部分基于物理模型进行估算,这些雪水当量数据的空间分辨率较低,且需要大量野外实测的积雪属性数据来作为输入模型的初始变量。在对中小流域雪水当量时空分布特征的估算,特别是地形因子较为复杂的山区,基于物理模型估算雪水当量以及被动微波遥感影像反演的雪水当量都不能满足需求。该文以黑河上游祁连山八宝河流域和冰沟小流域作为研究区域,利用2011年3景小流域ENVISAT-ASAR数据,获得流域积雪面积与雪水当量产品,结合DEM数据,拟合出研究区域的积雪衰减曲线。利用积雪衰减曲线,在祁连山黑河上游八宝河子流域,获取2008年逐日366天MODIS积雪面积比例产品MOD10A1数据,通过估算云下反照率的方法将逐日积雪面积比例产品进行去云处理,结合DEM数据得到像元地形因子,计算八宝河流域每个像元逐日雪水当量值,得到流域2008年雪水当量情况,分析流域内雪水当量分布规律以及流域内雪水当量年内时空变化。  相似文献   

8.
基于SAR图像的阈值分割法是水体信息有效提取的常用方法之一。针对Otsu算法对于SAR影像水体提取精度低、噪声大的问题,以C波段Sentinel-1 SAR为数据源,提出一种基于Otsu算法的SAR图像水体提取新方法。该方法首先基于双极化数据构建自然指数函数,优化原始Sentinel-1数据图像像元直方图分布,再结合Otsu算法对图像进行水体提取,最后基于DEM数据去除误提取的山体阴影。以同一天的Landsat 8光学影像作为真实水体样本进行精度评定,结果表明:在不同水体占比情况下,该方法水体提取精度均优于Otsu算法,在水体占比小于10%时综合精度提升约为20%—60%,而且噪声小、适用性强,可用于快速高效获取大范围内水体信息。  相似文献   

9.
结合Terra和Aqua卫星的积雪产品,获取2001~2008年东北-内蒙古地区逐年积雪日数分布,并利用此数据对比Terra卫星积雪数据获取的逐年积雪日数。结果表明随海拔的升高,双星与单颗卫星积雪日数差异呈现明显增加的趋势。整个东北-内蒙古地区双星积雪日数平均高出单颗卫星积雪日15 d,但与台站积雪日数对比发现,双星积雪日数平均仍然偏低27 d。这说明,利用Terra和Aqua双卫星积雪监测数据能明显改善山区云对遥感监测的影响,同时也可以减少降雪初期和消融期由于积雪消融较快带来的积雪漏测,但不足以消除云等因素的影响。考虑到获取的2001~2006年台站年积雪日数与MODIS年积雪日数与有良好的统计关系,利用两者建立的线性统计关系修正整个东北-内蒙古地区的MODIS积雪日数,能够很好地消除云等因素带来的MODIS双卫星积雪日数偏小的问题,修正后台站与双星积雪日数之间的绝对误差由原来的27 d减小到18 d。  相似文献   

10.
MODIS影像因其共享性和时间序列的完整性而成为大区域积雪监测研究广泛使用的数据源,进行MODIS影像波段间融合,能够为积雪研究提供较高分辨率的影像数据源。为了充分利用MODIS影像250 m分辨率波段的空间和光谱信息,提取亚像元级的积雪面积,使用两种具有高光谱保真度的影像融合方法:基于SFIM变换和基于小波变换的融合方法,采取不同的波段组合策略,对MODIS影像bands 1~2和bands 3~7进行融合,并以Landsat TM影像的积雪分类图作为“真值”,对融合后影像进行混合像元分解得到的积雪丰度图的精度进行评价。结果表明:利用基于SFIM变换和小波变换方法融合后影像提取的积雪分类图精度较高,数量精度为75%,比未融合影像积雪分类图的精度提高了6%,表明MODIS影像波段融合是一种提取高精度积雪信息的有效方法。  相似文献   

11.
Monitoring the extent and pattern of snow cover in the dry, high altitude, Trans Himalayan region (THR) is significant to understand the local and regional impact of ongoing climate change and variability. The freely available Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover images, with 500 m spatial and daily temporal resolution, can provide a basis for regional snow cover mapping, monitoring and hydrological modelling. However, high cloud obscuration remains the main limitation. In this study, we propose a five successive step approach — combining data from the Terra and Aqua satellites; adjacent temporal deduction; spatial filtering based on orthogonal neighbouring pixels; spatial filtering based on a zonal snowline approach; and temporal filtering based on zonal snow cycle — to remove cloud obscuration from MODIS daily snow products. This study also examines the spatial and temporal variability of snow cover in the THR of Nepal in the last decade. Since no ground stations measuring snow data are available in the region, the performance of the proposed methodology is evaluated by comparing the original MODIS snow cover data with least cloud cover against cloud-generated MODIS snow cover data, filled by clouds of another densely cloud-covered product. The analysis indicates that the proposed five-step method is efficient in cloud reduction (with average accuracy of > 91%). The results show very high interannual and intra-seasonal variability of average snow cover, maximum snow extent and snow cover duration over the last decade. The peak snow period has been delayed by about 6.7 days per year and the main agropastoral production areas of the region were found to experience a significant decline in snow cover duration during the last decade.  相似文献   

12.
Timely information on spatial distribution and temporal dynamics of snow cover in the pan-Arctic zone is needed, as snow cover plays an important role in climate, hydrology and ecological processes. Here we report estimates of snow cover in the pan-Arctic zone (north of 45° N) at 1-km spatial resolution and at a 10-day temporal interval over the period of April 1998 to December 2001, using 10-day composite images of VEGETATION sensor onboard Système Pour l'Observation de la Terre (SPOT)-4 satellite. The results show that snow covered area (SCA) in North America (north of 45° N) increased from 1998 to 2001, while SCA in Eurasia (north of 45° N) decreased from 1998 to 2000 but increased in 2001. There were large spatial and temporal variations of snow cover in the pan-Arctic zone during 1998-2001.  相似文献   

13.
基于MODIS数据的我国天山典型区积雪特征研究   总被引:1,自引:0,他引:1  
准确监测天山地区积雪面积和积雪日数对合理利用水资源及分析区域气候变化有重要意义。MODIS每日积雪产品可以为大面积快速积雪制图与监测提供依据,但因云量较高成为其应用的瓶颈。利用结合MODIS产品的时间与空间信息有效地减少了云对MODIS积雪产品的影响,并利用改进的MODIS积雪数据和DEM分析2002~2009年天山地区积雪面积和积雪日数的变化特征。结果表明:积雪频率总体上随着海拔升高而增大;不同坡向积雪面积差异明显,西北坡积雪覆盖率最高,北坡、西坡和东北坡次之,南坡和东南坡的积雪覆盖率最低;2006~2008年研究区积雪面积出现低值,年内最大积雪面积呈逐年减少的趋势;随着海拔下降,积雪日数逐渐变小,天山南部地区积雪日数仅为40 d以下;积雪日数大的区域年际积雪日数变化相对稳定,积雪日数少于40 d的区域积雪日数的变异系数最大,年际积雪日数变化不稳定。  相似文献   

14.
利用1980~2019年中国长时间序列的AVHRR逐日无云积雪面积产品和气象站实测雪深资料计算积雪日数、积雪初日、积雪终日、积雪期、雪深等积雪物候参数,研究积雪物候的时空分布变化,同时结合ECMWF-ERA5再分析资料和GIMMS NDVI3g数据集分别提取气象因子(气温、降水)和植被因子(返青期、枯黄期、生长期),探究北疆积雪物候变化对气象因子和植被因子的响应。结果表明:北疆近40 a间的平均积雪日数为81.62 d/a,73%的区域为稳定积雪区,积雪初日在11月、终日在3月,积雪期为每年11月初至次年3月底4月初;空间上呈现不均匀分布,其中阿勒泰山地区、天山地区、大部分塔城盆地和额尔齐斯谷地区为主要积雪区,1980~2019年间北疆积雪覆盖面积比例、积雪日数和积雪期逐年降低,积雪初日基本没变,但积雪终日显著提前;ECMWF-ERA5再分析资料表明1980~2019年北疆积雪期降水量无明显变化,但积雪覆盖面积比例显著降低,说明降雪区雪深可能增加,这与北疆气象站实测雪深逐渐增加结果相吻合;平均气温与积雪期积雪覆盖面积比例、积雪日数、积雪期长度相关性较大,呈现显著负相关,积雪期降水量与积雪物候参数呈现正相关;积雪物候及其气候效应引起北疆自然植被返青期显著提前,植被生长期延长的特征。  相似文献   

15.
Snow cover and glaciers are sensitive indicators of the environment. The vast spatial coverage of remote sensing data, coupled with the tough conditions in areas of interest has made remote sensing a particularly useful tool in the field of glaciology. Compared to optical images, synthetic aperture radar (SAR) data are hardly influenced by clouds. This is important because glacial areas are usually under cloud cover.The Dongkemadi glacier in the Qinghai-Tibetan plateau was selected as the study area for this paper. We use polarimetric SAR (PolSAR) image for classification on and around the glacier. The contrast between ice and wet snow is remarkable, but it is difficult to distinguish the ice from the ground on SAR images due to similar backscatter characteristics in former research. In our study, we found that this distinction can be achieved by target decomposition. Support Vector Machines (SVMs) are performed to classify the glacier areas using the selected features. The glacial areas are classified into six parts: wet snow, ice, river outwash, soil land, rocky land and others. The PolSAR-Target decomposition-SVMs (PTS) method is proven to be efficient, with an overall classification accuracy of 91.1% and a kappa coefficient of 0.875. Moreover, 86.63% of the bare ice and 96.76% of the wet snow are correctly classified. The classification map acquired using the PTS method also helps to determine the snow line, which is an important concept in glaciology.  相似文献   

16.
卫星遥感雪盖制图方法对比与分析   总被引:11,自引:1,他引:10       下载免费PDF全文
利用LandsatTM、NOAA/AVHRR和中分辨率成像光谱仪(MODIS)三个平台传感器的遥感数据,分别使用训练样本监督分类、阈值数字信号统计、雪盖指数方法制作雪盖图和提取积雪面积。结果表明:不同传感器遥感图像因时相和时空分辨率的差异,提取积雪信息的有效方法有所不同。但基于反射特性的雪盖指数计算法具有普遍的实际操作性意义,即雪盖制图精度高,分类合理,是提取积雪信息的最佳技术手段;当使用监督积雪分类时,只有取得精确的信号文件,分类结果才是可信的;而阈值数字信号统计的雪的阈值确定具有很大的经验性和随机性,但对数据不完整或只有单波段时也不失为有效和简便的途径;山影补偿处理法基本可以消除地形阴影的影响;而去云后其覆盖下的积雪恢复技术值得进一步讨论。  相似文献   

17.
Multi‐temporal compositing of SPOT‐4 VEGETATION imagery over tropical regions was tested to produce spatially coherent monthly composite images with reduced cloud contamination, for the year 2000. Monthly composite images generated from daily images (S1 product, 1‐km) encompassing different land cover types of the state of Mato Grosso, Brazil, were evaluated in terms of cloud contamination and spatial consistency. A new multi‐temporal compositing algorithm was tested which uses different criteria for vegetated and non‐vegetated or sparsely vegetated land cover types. Furthermore, a principal components transformation that rescales the noise in the image—Maximum Noise Fraction (MNF)—was applied to a multi‐temporal dataset of monthly composite images and tested as a method of additional signal‐to‐noise ratio improvement. The back‐transformed dataset using the first 12 MNF eigenimages yielded an accurate reconstruction of monthly composite images from the dry season (May to September) and enhanced spatial coherence from wet season images (October to April), as evaluated by the Moran's I index of spatial autocorrelation. This approach is useful for land cover change studies in the tropics, where it is difficult to obtain cloud‐free optical remote sensing imagery. In Mato Grosso, wet season composite images are important for monitoring agricultural crop cycles.  相似文献   

18.
基于MODIS数据的玛纳斯河山区雪盖时空分布分析   总被引:2,自引:0,他引:2  
基于2000~2010年的MODIS/Terra积雪8 d合成数据(MOD10A2)与DEM数据,通过计算和分析积雪频率与积雪覆盖率,研究了新疆玛纳斯河山区雪盖的时空分布特征。结果表明:① 研究区一月份积雪覆盖丰富,积雪频率高值区主要分布在北部中低山地区、南部中海拔地区以及清水河与塔西河的河源地区;四月与十月的雪盖分布规律相似,总体上积雪频率随高程上升而上升;七月份只有少部分高山区域被积雪覆盖;② 积雪频率始终保持较高水平的区域是玛纳斯河、金沟河、清水河以及塔西河的河源高山地区,而玛纳斯河流域中上游的河谷地区则始终保持较低水平;③ 一月份,1 400 m以下地区的积雪覆盖率超过95%,随着高程上升,迅速下降至2 600 m的最低值约41%,此后逐渐上升至5 000 m以上80%左右;④ 一月、四月和十月份积雪覆盖率在大部分高程带上均表现为北坡、东北坡和西北坡最高,东坡和西坡次之,南坡、东南坡和西南坡最低的规律;七月份各高程带的雪盖分布没有明显的坡向差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号