首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes an integrated handover authentication for NGN equipped with FMIPv6-based IP mobility over various kinds of access links. In ITU-T, an integrated authentication model has been introduced to support network attachment with mobility in NGN. Since existing studies for handover authentication have focused on the link layer or network layer respectively, there are additional authentication overhead such as duplicated authentication procedures and authentication messages delivery cost. The proposed integrated handover authentication contributes to reducing complexity of the authentication procedure and to enhancing the efficiency of it by means of the combined key management architecture; a mobile node generates a handover key to transfer it to the next access router through the AAA server, and hierarchical key management scheme addresses the locality of movement to authenticate the mobile node at the link layer. The evaluation of the handover authentication costs shows that it reduces the average number of handover authentication events and the authentication message delivery cost during moves in mobile networks. Also, the security aspects of the proposed scheme are discussed.  相似文献   

2.
Nowadays many manufacturers are building mobile devices with multiple interfaces. Thus, users have access to different types of wireless access networks, which often, as for WLAN and cellular systems, coexists independently. The challenge is to make such multiple access networks to cooperate to have ubiquitous access and enhanced user quality of service. In this paper we present a scheme to allow inter-technology mobility by the introduction of an overlay network, which works on top of current (and future) networks. The proposed architecture controls all the aspect related to the mobility management: mobile node localization, handover decision and execution. The approach is distributed: it is the mobile node that decides which network to use, based on the offered service quality and the cost of the communication of the available networks, and triggers the handover execution directly to the corresponding host, using optimized SIP-based procedures. The overlay network copes with the mobile node localization. We implemented our solution in the laboratory to prove its validity and to test performance using real equipment. We also simulated the scheme using ns-3 to extend the evaluation to large scale deployments. In both test environments, our solution demonstrates high accurateness in selecting the network with the best quality as well as in supporting seamless vertical handover.  相似文献   

3.
With the rapid development of wireless technologies and numerous types of mobile devices, the need to support seamless multimedia services in Mobile and Ubiquitous Computing (MUC) is growing. To support the seamless handover, several mobility protocols such as Mobile IPv6 (MIPv6) (Johnson et al., Mobility Support in IPv6, IETF, RFC 3775, 2004) and fast handover for the MIPv6 (FMIPv6) (Koodli et al. Past handovers for mobile IPv6 (FMIPv6), IETF, RFC 4068, 2005) were developed. However, MIPv6 depreciates the Quality-of-Service (QoS) especially in multimedia service applications because of the long handover latency and packet loss problem. To solve these problems in the MIPv6, FMIPv6 is proposed in the Internet Engineering Task Force (IETF). However, FMIPv6 is not robust for the multimedia services in heterogeneous emerging wireless networks when the MN may move to another visited network in contrast with its anticipation. In MUC, the possibility of service failure is more increased because mobile users can frequently change the access networks according to their mobility in heterogeneous wireless access networks such as 3Generation (3G), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMax) and Bluetooth co-existed. In this paper, we propose a robust seamless handover scheme for the multimedia services in heterogeneous emerging wireless networks. The proposed scheme reduces the handover latency and handover initiation time when handover may fail through the management of tentative Care-of Addresses (CoAs) that does not require Duplicate Address Detection (DAD). Through performance evaluation, we show that our scheme provides more robust handover mechanism than other scheme such as FMIPv6 for the multimedia services in heterogeneous emerging wireless networks.  相似文献   

4.
The evolution of wireless access technologies has led to a new era of mobile Internet for high-velocity vehicles. Network mobility is particularly suitable for vehicles because it considers the mobility of an entire network. Vehicles perform handover frequently thus efficient handover is essential to meet the QoS requirements for real-time communications. For high-velocity vehicles, the time constraint is even stricter and the Doppler Effect increases the transmission error rate that both add challenges in mobility management. In this paper, we propose a cross-layer hierarchical network mobility framework called Hi-NEMO for all-IP networks. The advantage of Hi-NEMO is no extra triangular route between a mobile network node and the correspondent node. The design is resilient to error-prone transmission, and protocol-supports fast QoS provisioning in the network mobility service domain. Intensive simulation results demonstrate that Hi-NEMO reduces handover latency as well as packet loss, and supports handover requirements in high-velocity vehicles.  相似文献   

5.
In this paper, we introduce a session key distribution mechanism for fast secure handover in wireless mobile networks. The proposed mechanism is based on the stream control transmission protocol in where a mobile node actively changes its IP address without its connection loss. When a mobile node moves between different access routers, the required session key at a new access router is distributed previously through the tunnel established between the previous access router and the new access router. Due to the reduced key distribution time, the mobile node achieves its secure seamless handover. The provided performance analysis proves that the proposed mechanism provides the reduced signaling cost compared to existing mobility protocols. In addition, the proposed mechanism reduces the handover latency so that the reduced amount of packet loss provides the stable handover performance for real-time applications.  相似文献   

6.
Traditional network architectures are about to reach the limits of sustainable development for future service innovation and growth. To overcome the limitation of current architectures and efficiently redesign the future network architecture, a new technology called “network virtualization” is under development. In particular, wireless network virtualization is expected to become an emerging architectural choice to support concurrent heterogeneous services with finer controls over quality of service (QoS) features on the shared wireless network. We note that mobility management has a great influence on user-perceived QoS due to the service disruption during a handover process, and one of the main advantages of wireless network virtualization is to allow for finer-grained control of mobility policy. Although there have been several studies on wireless network virtualization, they focus on virtualizing the radio resources and the network devices. Therefore, in this paper, we propose a detailed protocol to support seamless mobility using the virtualization approach in the IEEE 802.11 wireless networks. We analyze the performance of the proposed mobility management scheme in terms of the handover latency and the signaling overhead. Analytical and simulation results demonstrate that the proposed scheme can significantly reduce handover latency with reasonable signaling cost compared to proxy mobile IP (PMIP) and fast handover for PMIP (FPMIP) in the traditional network.  相似文献   

7.
The evolving network technologies aim at meeting the envisioned communication demands of future smart cities and applications. Although software-defined networking (SDN) enables flexible network control, its applicability to mobile networks is still in its infancy. When it comes to introducing the SDN vision to mobile networks, handling of wireless events and mobility management operations stand out as major challenges. In this paper, we study the scalability issues of SDNized wireless networks, specifically those relevant to mobility management. We design and implement different mobility management approaches in SDNized wireless networks and investigate the impact of various system variables on the overall handover delays. We also study the improvements in handover delays: (i) when a proposed proactive mobility management algorithm is implemented; (ii) when the controller delegates partial control of mobility management to the forwarding entities. For the implementation of the proposed approaches on the OpenFlow network, the paper also suggests potential extensions to the OpenFlow protocol. The contributed approaches are validated on a full-scale demonstrator, with results showing that proactive outperforms reactive and that the delegated control approach performs better than proactive for smaller topology sizes. Furthermore, a proposal for LTE X2-specific control delegation is discussed as a use case.  相似文献   

8.
Quality-of-service signaling for next-generation IP-based mobile networks   总被引:2,自引:0,他引:2  
We present a novel end-to-end QoS architecture that enables seamless services over heterogeneous wireless access networks. We discuss the main architectural approaches and design issues of mobility-aware QoS signaling in IP networks. Then we introduce a QoS signaling architecture that integrates resource management with mobility management. It is based on a domain resource manager concept and nicely supports various handover types in an integrated approach. In particular, we support anticipated handover with pre-reservation of resources over the old network before the mobile node is attached to the new access point.  相似文献   

9.
Next generation wireless networks (NGWN) will be an integration of heterogeneous wireless access networks that will interwork over an IP‐based infrastructure. This all‐IP vision has led to the development of handover mechanisms to support seamless mobility for active network services among the different interworking wireless networks in order to ensure network access ubiquity in NGWN. These handover mechanisms need to ensure that mobile devices continue to receive ongoing communication without any noticeable disruption during handover events among the heterogeneous networks. This paper gives a qualitative and quantitative review of current handover approaches of IP mobility management protocols for NGWN with an objective to introduce a new way of further optimizing the handover performance. In particular, the paper focuses on handover approaches of mobile IPv6 (MIPv6) based mobility management protocols. Thus, the need, benefits, and limitations of these handover approaches are explored. Thereafter, dynamic handover coordination is introduced as a new viable solution that exploits the benefits and mitigates the limitations of these handover approaches hence improving handover performance in terms of handover delay, packet loss, and signaling overhead. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
WiMAX is a wireless metropolitan area network (WMAN) specified by IEEE 802.16. It provides the broadband wireless access for mobile devices. In such a system, to enable the mobility, the handover is supported to maintain the connectivity of the mobile station (MS) when it moves from the coverage of the serving base station (BS) to the coverage of a neighbor BS. In the handover process, scanning is required to find a suitable target BS, and network re-entry is needed to establish the new connection. However, in the standard handover process, a long latency to data transmissions is caused resulting in the serious interruption to ongoing services. In this paper, an improved handover scheme is proposed to reduce the latency introduced in the handover process by shortening the scanning and enhancing the network re-entry. The proposed scanning strategy reduces the latency by reducing the number of neighbor BSs to be scanned through estimating the rough location of the MS. The enhanced network re-entry reduces the delay by updating transport connection identifiers (CIDs) early to allow the fast resumption of active applications. Simulations were conducted to evaluate the performance of the proposed handover scheme. The results show that the proposed handover scheme reduces the data transmission latency during handover significantly.  相似文献   

11.
The convergence of multitude radio access networks forming a cluster of seamless heterogeneous wireless environment has made the wireless communication industry meet the paradigm of always best connected, where various mobile devices are able to access numerous types of applications and services. However, achieving such landmarks could not be possible without difficulties which this paper tries to highlight some of the technical challenges underlying seamless vertical handover. It provides a general overview of the mobility management process including a brief on multi-homing mobility protocol and focuses on vertical handover decision making techniques, hi ghlighting some radio interface standar and analysed some handover approaches. The paper proposes fast intelligent inter-layer network selection as a new handover approach to select the best network among the candidate networks, where Quality of Service, handover delay and improved data bit rates are set to be achieved.  相似文献   

12.
The 4G or Beyond 3G wireless networks is consist of IP-based heterogeneous access networks from 3G cellular, WiFi, WiMAX to other emerging access technologies such as mesh networks. The key objective of designing the next generation wireless networks is to support of mobile subscribers. To support the mobile host in the hybrid wireless access technologies, many solutions based on network protocol stack have been proposed in the literature. In this article, after review of mobility concepts, a special attention is given to some of the mobility management methods as well as handover techniques across various wireless access networks. We have also compared the major mobility protocols in each layer for their features. Finally, some of the open issues that needed to be addressed in mobility management protocol in the next generation wireless networks are outlined.  相似文献   

13.
The handover processes in present IP mobility management protocols incur significant latency, thus aggravating QoS of consumer devices. In this paper, we introduce an enhanced handover process for the Proxy Mobile IPv6 (PMIPv6) protocol, which is a recently developed IP mobility management protocol aiming at providing network-based mobility support. The proposed handover process further improves handover performance of PMIPv6 by allowing a new access network obtains handover context before a consumer??s mobile node (MN) moves to the new access network. Data packets destined for the MN are buffered to prevent packet loss and immediately delivered to the MN as the MN moves to the new access network. We evaluate the handover latency and data packet loss of the proposed handover process compared to the basic one of PMIPv6. The conducted analysis results confirm that the proposed handover process yields the reduced handover latency compared to that of the basic PMIPv6 and also prevents data packet loss. We moreover evaluate the buffering cost of the proposed handover process.  相似文献   

14.
The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently a proposed smooth adaptive soft-handover algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections.  相似文献   

15.
Broadband wireless access networks, such as the IEEE 802.16 standard for wireless metropolitan area networks (WMANs), aim to provide high bandwidth, low-cost, scalable solutions that extend multimedia services from backbone networks to wireless users. Because of a larger coverage area, portability and mobility have become significant issues for providing high quality mobile services, as it is crucial to minimize handover latency and maintain IP session continuity. As a result, such issues were addressed by the IEEE 802.16e task group on the mobile WMAN. However, the scope of the IEEE 802.16e standard did not include cross-layering approaches for the enhancement of upper layer handover performance. This article proposes a new cross-layering design for fast IPv6 handover support over IEEE 802.16e. First, we describe the IEEE 802.16 deployment architectures, as well as the link layer, handover procedures in IEEE 802.16e. Next, we describe the operation of fast IPv6 handover and point out the need for interaction between the network layer and the link layer for proper performance. Then, we propose a new cross-layering design to achieve a proper behavior of the fast IPv6 handover over IEEE 802.16e. Finally, we present handover scenarios for the proposed techniques and discuss the major factors that contribute to the handover latency.  相似文献   

16.
新一代互联网移动管理机制研究   总被引:2,自引:0,他引:2       下载免费PDF全文
董平  杨冬  秦雅娟  张宏科 《电子学报》2008,36(10):1916-1922
 传统互联网以"固定、有线"为主的连通方式,难以适应新的无线/移动网络的发展需求.本文提出了一种新一代互联网移动管理机制——标识分离映射机制ISMS,详细介绍了ISMS的基本理论和协议流程,并与移动IPv6协议进行了性能分析和对比.ISMS是一种基于网络的移动管理机制,其切换管理和位置管理均由网络完成,能够满足新一代互联网移动管理机制在快速切换、路由优化、可扩展、可控可管、保护位置隐私、安全性和降低无线链路开销等方面的需求.理论分析表明ISMS的网络层面平均切换时延远小于移动IPv6的平均切换时延,能够有效支持绝大部分实时应用.原型系统的实现和验证进一步说明了ISMS的可行性和有效性.  相似文献   

17.
In delay-tolerant mobile ad hoc networks, motion of network nodes, network sparsity and sporadic density can cause a lack of guaranteed connectivity. These networks experience significant link delay and their routing protocols must take a store-and-forward approach. In this paper, an opportunistic routing protocol is proposed, along with its compatible media access control, for non-real-time services in delay-tolerant networks. The scheme is mobility-aware such that each network node needs to know its own position and velocity. The media access control employs a four-fold handshake procedure to probe the wireless channel and cooperatively prioritize candidate nodes for packet replication. It exploits the broadcast characteristic of the wireless medium to utilize long-range but unreliable links. The routing process seizes opportunities of node contacts for data delivery. It takes a multiple-copy approach that is adaptive with node movements. Numerical results in mobile ad hoc networks and vehicular ad hoc networks show superior performance of the proposed protocol compared with other routing protocols. The mobility-aware media access control and routing scheme exhibits relatively small packet delivery delay and requires a modest amount of total packet replications/transmissions.  相似文献   

18.
The accessibility of available wireless access technologies with increasing demand for real time multimedia application becomes an essential part for mobile communication. Mobile users resourcefully utilize the heterogeneous environment for best quality of service (Qos) anywhere and anytime. Efficient handover optimization and intelligent mobility management is a key requirement for designing next generation wireless networks. Therefore, a novel IEEE 802.21 media independent handover (MIH) standard is adopted to provide an associated service for intelligent handover procedures. In addition, dynamic mobility management decision server (MDS) and IEEE 802.21a security extension for MIH services are also integrated in the proposed architectures to support fast, seamless and secure handover optimization in inter-domain mobility. Simulation results prove that the presented work resourcefully minimizes the packet loss, unnecessary handover probability and vertical handover delay by avoiding time consuming scanning process for target network discovery. The system thus achieves Qos guarantee by balancing the network load and throughput improvement for different applications with Proxy MIPv6 mobility management protocol.  相似文献   

19.
In Next-Generation (NG) hybrid wireless networks, Mobile-Controlled Handover (MCHO) is expected to be employed as the handover control mechanism, in contrast to Network-Controlled Handover (NCHO) used in homogeneous wireless networks. As more independent network operators get involved in providing Internet access, roaming mobile users would have to deal with complex trust relationships between heterogeneous network domains. The state-of-the-art handover approaches just take into account Quality of Service (QoS), but ignore the complexities arising from the coexistence of multiple network operators in the NG networks. The existence of a complex trust relationship between networks may lead to unnecessary handover attempts in service roaming. In this regard, this paper introduces a novel approach of dynamically retrieving network trust information, and using it in MCHO. We show how network trust information can be utilised to obtain a 35% reduction in handover delay, meanwhile retain QoS in a handover. The proposed scheme does not need bulk storage in mobile handsets, and can react to changes to network topology and trust relationships dynamically. Analytical results are provided to demonstrate how roaming mobile users make more intelligent and reliable handover if implementing the proposed handover approach in a multi-operator and multi-technology environment.  相似文献   

20.
Marsan  M. Ajmone  Chiasserini  C.F.  Fumagalli  A.  Lo Cigno  R.  Munafò  M. 《Wireless Networks》2001,7(4):425-436
This paper presents a handover protocol for wireless ATM networks, which makes use of in-band signaling, i.e., of ATM resource management cells, to process network handovers and guarantee the in-sequence and loss-free delivery of the ATM cells containing user data. The goal of the proposed approach is to minimize the modifications of the ATM signaling standard required to overlay user mobility onto the fixed network infrastructure, and provide for a gradual upgrade of the fixed network to handle mobility. The proposed protocol handles both local handovers, in which the connection access point needs not migrate to a new ATM local exchange, and global handovers, in which the connection access point must migrate to a new local exchange. The handover scheme is devised so as to grant in-sequence delivery of cells. The performance of the network during handover is analyzed in case of connections requiring loss-free operation. The considered performance figures are the cell transmission delay introduced by the handover and the cell buffering requirements posed to the network. The behavior of the proposed protocol in presence of multiple handovers is studied via simulation, while a simple analytical method is derived for the performance evaluation of a single handover in isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号