首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mobile data collectors (MDCs) are very efficient for data collection in internet of things (IoT) sensor networks. These data collectors collect data at rendezvous points to reduce data collection latency. It is paramount to determine these points in an IoT network to collect data in real time. It is important to consider IoT network characteristics to collect data on a specific deadline. First, the disconnected IoT sensor network is a real challenge in IoT applications. Second, it is essential to determine optimal data collection points (DCPs) and MDCs simultaneously to collect data in real time. In this study, Deadline-based Data Collection using Optimal Mobile Data Collectors (DDC-OMDC) scheme is proposed that aims to collect data in a disconnected network with the optimal number of mobile data collectors in a specific deadline for delay-intolerant applications. DDC-OMDC works in two phases. In the first phase, the optimal number of MDCs is determined to collect data at the optimal data collection points to guarantee one-hop data collection from each cluster. The optimal mobile data collectors are determined using optimal DCPs, data collection stopping time, and a specific deadline. In the second phase, the optimal data collection trajectory is determined for each MDC using the nearest neighbor heuristic algorithm to collect data in real time. The simulation results show that the proposed scheme outperforms in collecting data in real time and determines optimal mobile data collectors and optimal data collection trajectory to collect data in a specific deadline for delay-intolerant applications.  相似文献   

2.
In this paper, we use an integrated architecture that takes advantage of the low cost mobile sensor networks and 3G cellular networks to accommodate multimedia medical calls with differentiated Quality-of-Service (QoS) requirements. We propose a low-energy, distributed, and concentric-zone-based data query mechanism that takes advantages of hierarchical ad hoc routing algorithms to enable a medical specialist to collect physiological data from mobile and/or remote patients. The medical specialist uses cellular network to report patients' data to the medical center. Moreover, we propose a transmission scheme among different zones with balance-based energy efficiency, which can extend network lifetime. We evaluate the validity of our proposals through simulations and analyze their performance. Our results clearly indicate the energy efficiency of the proposed sensor network query algorithms and the efficiency of our multiclass medical call admission control scheme in terms of meeting the multimedia telemedicine QoS requirements.  相似文献   

3.
Due to sporadic availability of energy, a fundamental problem in rechargeable wireless sensor networks is nodes have to adjust their duty cycles continuously. On the other hand, the energy harvested from surrounding environment usually is not enough to power sensor nodes continually. Therefore, the nodes have to operate in a very low duty cycle. These unique characteristics cause packet delivery latency is critical in Rechargeable WSNs. At the same time, energy storage device of a node is always limited. Hence, the node cannot be always beneficial to conserve energy when a network can harvest excessive energy from the environment. In this work, we introduce a scheme by improving transmission power of nodes to bound E2E delay. We provide an algorithm for finding the minimal sleep latency from a node to a sink by increasing minimal h number of nodes whose transmission power improved. For bounding E2E delay from source node to the sink, we propose an E2E delay maintenance solution. Through extensive simulation and experiments, we demonstrate our delay bound maintenance scheme is efficient to provide E2E delay guarantees in rechargeable wireless sensor networks.  相似文献   

4.
In this paper, we propose a hybrid sensor calibration scheme for mobile crowdsensing applications. As the number of newly produced mobile devices containing embedded sensors continues to rise, the potential to use mobile devices as a sensor data source increases. However, because mobile device sensors are generally of a lower performance and cost than dedicated sensors, sensor calibration is crucial. To enable more accurate measurements of natural phenomena through the use of mobile device sensors, we propose a hybrid sensor calibration scheme for such sensors; the scheme makes use of mobile device sensors and existing sensing infrastructure, such as weather stations, to obtain dense data. Simulation results show that the proposed scheme supports low mean square errors. As a practical application of our proposed scheme, we built a temperature map of a city using six mobile phone sensors and six reference sensors. Thanks to the mobility of the sensors and the proposed scheme, our map presents more detailed information than infrastructure‐based measurements.  相似文献   

5.
在社团结构网络模型下,建立社团间多副本数据转发策略的传输概率模型,提出一种基于社团结构的多副本数据传输(CMDD)策略。CMDD策略动态计算社团间移动节点的平均相遇间隔时间,并根据传输概率模型估算借助该社团分发副本可获得的成功传输概率。模拟实验表明,CMDD策略能以较低的传输延迟和较低的传输开销获得较高的数据传输成功率。  相似文献   

6.
In wireless sensor networks, efficiently disseminating data from a dynamic source to multiple mobile sinks is important for the applications such as mobile target detection and tracking. The tree-based multicasting scheme can be used. However, because of the short communication range of each sensor node and the frequent movement of sources and sinks, a sink may fail to receive data due to broken paths, and the tree should be frequently reconfigured to reconnect sources and sinks. To address the problem, we propose a dynamic proxy tree-based framework in this paper. A big challenge in implementing the framework is how to efficiently reconfigure the proxy tree as sources and sinks change. We model the problem as on-line constructing a minimum Steiner tree in an Euclidean plane, and propose centralized schemes to solve it. Considering the strict energy constraints in wireless sensor networks, we further propose two distributed on-line schemes, the shortest path-based (SP) scheme and the spanning range-based (SR) scheme. Extensive simulations are conducted to evaluate the schemes. The results show that the distributed schemes have similar performance as the centralized ones, and among the distributed schemes, the SR scheme outperforms the SP scheme.  相似文献   

7.
Along with the widespread deployment of the Third Generation (3G) cellular networks, the fast‐improving capabilities of the mobile devices, content, and service providers are increasingly interested in supporting multicast communications over wireless networks and in particular over Universal Mobile Telecommunications System (UMTS). To this direction, the Third Generation Partnership Project (3GPP) is currently standardizing the Multimedia Broadcast/Multicast Service (MBMS) framework of UMTS. In this paper, we present an overview of the MBMS multicast mode of UMTS. We analytically present the multicast mode of the MBMS and analyze its performance in terms of packet delivery cost under various network topologies, cell types, and multicast users' distributions. Furthermore, for the evaluation of the scheme, we consider different transport channels for the transmission of the multicast data over the UMTS Terrestrial Radio‐Access Network (UTRAN) interfaces. Finally, we propose a scheme for the efficient radio bearer selection that minimizes total packet delivery cost. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Convergecast is a general communication pattern of wireless sensor networks (WSNs) in which sensed data is collected from outlying sensor nodes and is transmitted to a sink node. In this paper, we consider periodic convergecast, in which data packets are generated and transmitted repeatedly with a certain interval. To support the periodical packet delivery efficiently, we propose a reservation based multi-channel MAC protocol (RM-MAC) which employs a time reservation mechanism. Periodical packet delivery allows receiver nodes to recognize when the next packet is transmitted, which makes the nodes reserve the time for the next packet transmission. Consequently, our proposed mechanism can guarantee minimum delivery latency from source nodes to a sink node. Furthermore, RM-MAC provides a collision resolution mechanism which coordinates the reserved periodical transmissions among multiple sender nodes. It can prevent repeated collisions caused by the multiple-senders-single-receiver problem. We implement RM-MAC by using an ns-2 simulator to compare its performance with other protocols. The simulation results show that RM-MAC outperforms existing protocols in terms of energy efficiency and packet delivery latency.  相似文献   

9.
Currently, VR video delivery over 5G systems is still a very complicated endeavor. One of the major challenges for VR video streaming is the expectations for low latency that current mobile networks can hardly meet. Network caching can reduce the content delivery latency efficiently. However, current caching schemes cannot obtain ideal results for VR video since it requests the viewport interactively. In this paper, we propose a tiled scalable VR video caching scheme over 5G networks. VR chunks are first encoded into multi-granularity quality layers, and are then partitioned into tiles to facilitate viewport data access. By accommodating the 5G network infrastructure, the tiles are cooperatively cached in a three-level hierarchal system to reduce delivery latency. Furthermore, a quality-adaptive request routing algorithm is designed to cater for the 5G bandwidth dynamics. Experimental results show that the proposed scheme can reduce the transmission latency over conventional constant bitrate video caching schemes.  相似文献   

10.
Due to the introduction of telecommunication technologies in telemedicine services, the expeditious development of wireless and mobile networks has stimulated wide applications of mobile electronic healthcare systems. However, security is an essential system requirement since many patients have privacy concerns when it comes to releasing their personal information over the open wireless channels. For this reason, this study discusses the characteristics and security issues with wireless and pervasive data communications for a ubiquitous and mobile healthcare system which consists of a number of mobile devices and sensors attached to a patient. These devices form a mobile ad hoc sensor network and collect data that are sent to a hospital or healthcare center for monitoring. Subsequently, this paper discusses the innovation and design of a novel trust evaluation model. We then propose a secure multicast strategy that employs trust in order to evaluate the behavior of each node, so that only trustworthy nodes are allowed to participate in communications, while the misbehavior of malicious nodes is effectively prevented. We analyze the security properties of our multicast scheme and evaluate its performance based on simulation experiments. Our experimental results demonstrate that our scheme not only achieves the necessary data transmission in mobile environments, but also provides more security with reasonably little additional overhead.  相似文献   

11.
A wireless sensor network typically consists of users, a sink, and a number of sensor nodes. The users may be remotely connected to a wireless sensor network and via legacy networks such as Internet or Satellite the remote users obtain data collected by the sink that is statically located at a border of the wireless sensor network. However, in practical sensor network applications, there might be two types of users: the traditional remote users and mobile users such as firefighters and soldiers. The mobile users may move around sensor fields and they communicate with the static sink only via the wireless sensor networks in order to obtain data like location information of victims in disaster areas. For supporting the mobile users, existing studies consider temporary structures. However, the temporary structures are constructed per each mobile user or each source nodes so that it causes large energy consumption of sensor nodes. Moreover, since some of them establish the source-based structure, sinks in them cannot gather collective information like mean temperature and object detection. In this paper, to effectively support both the remote users and the mobile users, we propose a novel service protocol relying on the typical wireless sensor network. In the protocol, multiple static sinks connect with legacy networks and divide a sensor field into the number of the multiple sinks. Through sharing queries and data via the legacy networks, the multiple static sinks provide high throughput through distributed data gathering and low latency through short-hops data delivery. Multiple static sinks deliver the aggregated data to the remote users via the legacy networks. In case of the mobile users, when a mobile user moves around, it receives the aggregated data from the nearest static sink. Simulation results show that the proposed protocol is more efficient in terms of energy consumption, data delivery ratio, and delay than the existing protocols.  相似文献   

12.
Battery lifetime is a key impediment to long-lasting low power sensor nodes and networks thereof. Energy harvesting—conversion of ambient energy into electrical energy—has emerged as a viable alternative to battery power. Indeed, the harvested energy mitigates the dependency on battery power and can be used to transmit data. However, unfair data delivery delay and energy expenditure among sensors remain important issues for such networks. We study performance of sensor networks with mobile sinks: a mobile sink moves towards the transmission range of the different static sensor nodes to collect their data. We propose and analyse a Markovian queueing system to study the impact of uncertainty in energy harvesting, energy expenditure, data acquisition and data transmission. In particular, the energy harvesting sensor node is described by a system with two queues, one queue corresponding to the battery and the other to the data buffer. We illustrate our approach by numerical examples which show that energy harvesting correlation considerably affects performance measures like the mean data delay and the effective data collection rate.  相似文献   

13.
A Distributed Medium Access Control (D-MAC) protocol based on UWB for high-rate Wireless Personal Area Networks is specified by the WiMedia Alliance. D-MAC protocol is suitable for ubiquitous connection in home networks, military/medical applications due to its inexpensive cost, low power consumption, high data rate, and distributed approach. In contrast to IEEE 802.15.3, D-MAC makes all devices have the same functionality. And its networks are self-organized and provide devices with functions such as access to the medium, channel allocation to devices, data transmission, quality of service and synchronization in a distributed manner. D-MAC fundamentally removes the problems of the centralized MAC approach revealed at IEEE 802.15.3 MAC by adopting a distributed architecture. However, the current D-MAC can’t prevent QoS degradations, occurred by mobile nodes with low data rate due to bad channel status, which cause critical problems in QoS provisioning to isochronous streams and mobile applications. Therefore, we propose a distributed cooperative MAC protocol for multi-hop WiMedia networks using virtual MIMO links. Based on instantaneous Channel State Information among WiMedia devices, our proposed protocol can intelligently select the transmission path with higher data rate to provide advanced QoS with minimum delay for real-time multimedia streaming services.  相似文献   

14.
We consider the problem of routing and scheduling a set of mobile elements that act as mechanical carriers of data, harvesting them from sensor nodes and delivering them to a sink. The objective is to minimize the data delivery latency. Most of the existing work has focused on designing delay minimizing routes for the mobile nodes by leveraging variants of the Traveling Salesman Problem (TSP). We show that TSP-based routes can lead to delay that is arbitrarily worse than the optimal. The main insight is that as data generation rates of sensors may vary, some sensors need to be visited more frequently than others. To that end, we consider a network with a single sink and develop a path splitter algorithm that “splits” a TSP-based route into several loops intersecting at the sink. Numerical results show that our algorithm can improve average delay by more than 40% in some instances while requiring a modest computational effort to modify the TSP-based route. The work is useful in prolonging sensor network lifetime and in relaying data in partitioned networks.  相似文献   

15.
Fei  Sunil   《Ad hoc Networks》2006,4(2):254-282
This paper targets mobile telemedicine applications that can be supported using third generation (3G) cellular networks, to provide highly flexible medical services. On the other hand, large-scale Ad hoc Sensor Networks (ASN), when deployed among mobile patients who may carry different kinds of micro-sensors to measure ECG, blood pressure, basal temperature or other physiological data, can provide a dynamic data query architecture to allow the medical specialists to monitor patients at any place. So far very little research has been conducted to explore the possibility of integrating ASN with mobile telemedicine. In this paper: 1. we suggest an integrated architecture that takes advantage of the low cost mobile sensor networks and 3G cellular networks to support multimedia medical calls with differentiated Quality-of-Service (QoS) requirements. 2. We propose a low-energy, distributed, concentric-zone-based data query mechanism that has the advantages of both proactive and reactive ad hoc routing algorithms to collect medical results from large-scale mobile patients for medical specialists who use cellular network to report patient data to the medical center. 3. In order to minimize the ambulance wireless call-dropping rate, we adopt accurate resource reservation call admission control (CAC) scheme to allocate the necessary bandwidth in the destination cell. 4. In order to meet the QoS requirements of patients’ wireless calls, we use dynamic guard channel CAC scheme to keep their handoff-call dropping rate below a certain threshold. We evaluate the validity of our schemes through simulations and analyze their performance. Our results clearly indicate the efficiency of the proposed CAC and sensor network query algorithms to meet the multimedia telemedicine QoS requirements.  相似文献   

16.
The envisioned sensor network architecture where some of the nodes may be mobile poses several new challenges to this special type of ad hoc wireless network. Recently, researchers have proposed several data dissemination protocols based on either some hierarchical structure mainly constructed by a source node or source/sink oriented dissemination tree to support mobile sinks. However, such a source-initiated hierarchical structure results in significant resource consumption as the number of source-sink pairs are increased. Additionally, stimulus mobility aggravates the situation, where several sources may build a separate data forwarding hierarchy along the stimulus moving path. In this paper, we propose a new data dissemination protocol that exploits “Quadtree-based network space partitioning” to provide more efficient routing among multiple mobile stimuli and sink nodes. A common hierarchy of cluster-head nodes is constructed where the data delivery to mobile sinks is independent of the current position of mobile stimuli. Therefore, the overhead needed for hierarchy (route) maintenance is lower. Simulation results show that our work significantly reduces average energy consumption while maintaining comparably higher data delivery ratio.  相似文献   

17.
This paper proposes a mobility management scheme to provide a mobile node with high-quality handovers among heterogeneous wireless access networks. The proposed scheme employs a signaling architecture to support fast and reliable delivery of control messages by separating a control plane from a data transport plane in the core network. The proposed scheme is based on the network-based mobility management framework which requires the minimum modifications on terminal devices. With interaction between Layers 2 and 3, the proposed scheme accelerates the handover control procedures. It also enables a mobile subscriber to select a target network for a vertical handover with consideration of not only wireless signal strength but also user preference and quality-of-service status. The proposed scheme addresses the well-known problems of the Mobile IP-based approaches, triangular routing and bottleneck at the home agent, since it establishes a data tunnel for a mobile node along the shortest path between two different access networks. The simulation and experimental results indicate that our scheme provisions more efficient performance than the existing approaches in terms of handover latency, data packet loss, data delivery latency and load balancing.  相似文献   

18.
Query processing in mobile Wireless Sensor Networks (WSNs) is still a challenging problem because sensor mobility causes frequent changes of network topology. In this paper, we study the problem of processing Continuous Location Dependent Query (CLDQ) that retrieves the sampling data of the sensors within a specific area (i.e. query area) around a mobile sensor. Existing query processing approaches can not efficiently process CLDQs with continuously moving query areas. We propose scalable techniques to process CLDQs efficiently and accurately, including a dissemination approach, a Contention-based Distance-aware Message Scheduling scheme, in which each stationary sensor’s data transmissions are smartly scheduled according to its distance to the mobile sensor, and an optimization scheme for continuous processing of CLDQs. Extensive experiments indicate that our techniques demonstrate better efficiency of processing CLDQs over state-of-the-art techniques while achieving high accuracy and short query latency under various network settings.  相似文献   

19.
Clustering has been used as one of energy-efficient mechanisms for data routing in wireless sensor networks. In hierarchical routing approaches, cluster heads are responsible for management (e.g. data aggregation, queries dispatch) and transmission of the collected data in the region controlled by them. For efficient data delivery, several researches have proposed various mechanisms for cluster organization and cluster head selection. However, less focus is given in the area of data transmission associated with Base Station (BS). In such a situation, any failure or packet loss may lead to considerable packet loss. For solving this problem, we propose an efficient data routing scheme for controlling data delivery from nodes to BS. In our proposed approach every node is aware about the link quality of all nodes and is able to deliver data to the BS through the most reliable and energy-efficient route.  相似文献   

20.
Mobile devices have been widespread and become very popular with connectivity to the Internet, and a lot of desktop PC applications are now aggressively ported to them. Unfortunately, mobile devices are often vulnerable to malicious attacks due to their common usage and connectivity to the Internet. Therefore, the demands on the development of mobile security systems increase in accordance with advances in mobile computing. However, it is very hard to run a security program on a mobile device all of the time due the device's limited computational power and battery life. To overcome these problems, we propose a novel mobile security scheme that migrates heavy computations on mobile devices to cloud servers. An efficient data transmission scheme for reducing data traffic between devices and servers over networks is introduced. We have evaluated the proposed scheme with a mobile device in a cloud environment, whereby it achieved a maximum speedup of 13.4 compared to a traditional algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号