首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
We present a physical modeling of tunneling currents through ultrathin high-/spl kappa/ gate stacks, which includes an ultrathin interface layer, both electron and hole quantization in the substrate and gate electrode, and energy band offsets between high-/spl kappa/ dielectrics and Si determined from high-resolution XPS. Excellent agreements between simulated and experimentally measured tunneling currents have been obtained for chemical vapor deposited and physical vapor deposited HfO/sub 2/ with and without NH/sub 3/-based interface layers, and ALD Al/sub 2/O/sub 3/ gate stacks with different EOT and bias polarities. This model is applied to more thermally stable (HfO/sub 2/)/sub x/(Al/sub 2/O/sub 3/)/sub 1-x/ gate stacks in order to project their scalability for future CMOS applications.  相似文献   

2.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-/spl kappa/ dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-/spl kappa/ dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/A(2-5/spl times/10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ to 1.3/spl times/10/sup 19/ cm/sup -3/eV/sup -1/, somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-/spl kappa//gate stacks, relative comparison among them and to the Si--SiO/sub 2/ system.  相似文献   

3.
Ultrathin nMOSFET hafnium oxide (HfO/sub 2/) gate stacks with TiN metal gate and poly-Si gate electrodes are compared to study the impact of the gate electrode on long term threshold instability reliability for both dc and ac stress conditions. The poly-Si/high-/spl kappa/ interface exhibits more traps due to interfacial reaction than the TiN/high-/spl kappa/ interface, resulting in significantly worse dc V/sub th/ instability. However, the V/sub th/ instability difference between these two stacks decreases and eventually diminishes as ac stress frequency increases, which suggests the top interface plays a minor role in charge trapping at high operating frequency. In addition, ac stress induced interface states (Nit) can be effectively recovered, resulting in negligible G/sub m/ degradation.  相似文献   

4.
Building on a previously presented compact gate capacitance (C/sub g/-V/sub g/) model, a computationally efficient and accurate physically based compact model of gate substrate-injected tunneling current (I/sub g/-V/sub g/) is provided for both ultrathin SiO/sub 2/ and high-dielectric constant (high-/spl kappa/) gate stacks of equivalent oxide thickness (EOT) down to /spl sim/ 1 nm. Direct and Fowler-Nordheim tunneling from multiple discrete subbands in the strong inversion layer are addressed. Subband energies in the presence of wave function penetration into the gate dielectric, charge distributions among the subbands subject to Fermi-Dirac statistics, and the barrier potential are provided from the compact C/sub g/-V/sub g/ model. A modified version of the conventional Wentzel-Kramer-Brillouin approximation allows for the effects of the abrupt material interfaces and nonparabolicities in complex band structures of the individual dielectrics on the tunneling current. This compact model produces simulation results comparable to those obtained via computationally intense self-consistent Poisson-Schro/spl uml/dinger simulators with the same MOS devices structures and material parameters for 1-nm EOTs of SiO/sub 2/ and high-/spl kappa//SiO/sub 2/ gate stacks on (100) Si, respectively. Comparisons to experimental data for MOS devices with metal and polysilicon gates, ultrathin dielectrics of SiO/sub 2/, Si/sub 3/N/sub 4/, and high-/spl kappa/ (e.g., HfO/sub 2/) gate stacks on (100) Si with EOTs down to /spl sim/ 1-nm show excellent agreement.  相似文献   

5.
High-/spl kappa/ Al/sub 2/O/sub 3//Ge-on-insulator (GOI) n- and p-MOSFETs with fully silicided NiSi and germanided NiGe dual gates were fabricated. At 1.7-nm equivalent-oxide-thickness (EOT), the Al/sub 2/O/sub 3/-GOI with metal-like NiSi and NiGe gates has comparable gate leakage current with Al/sub 2/O/sub 3/-Si MOSFETs. Additionally, Al/sub 2/O/sub 3/-GOI C-MOSFETs with fully NiSi and NiGe gates show 1.94 and 1.98 times higher electron and hole mobility, respectively, than Al/sub 2/O/sub 3/-Si devices, because the electron and hole effective masses of Ge are lower than those of Si. The process with maximum 500/spl deg/C rapid thermal annealing (RTA) is ideal for integrating metallic gates with high-/spl kappa/ to minimize interfacial reactions and crystallization of the high-/spl kappa/ material, and oxygen penetration in high-/spl kappa/ MOSFETs.  相似文献   

6.
Dielectric relaxation currents in SiO/sub 2//Al/sub 2/O/sub 3/ and SiO/sub 2//HfO/sub 2/ high-/spl kappa/ dielectric stacks are studied in this paper. We studied the thickness dependence, gate voltage polarity dependence and temperature dependence of the relaxation current in high-/spl kappa/ dielectric stacks. It is found that high-/spl kappa/ dielectric stacks show different characteristics than what is expected based on the dielectric material polarization model. By the drain current variation measurement in n-channel MOSFET, we confirm that electron trapping and detrapping in the high-/spl kappa/ dielectric stacks is the cause of the dielectric relaxation current. From substrate injection experiments, it is also concluded that the relaxation current is mainly due to the traps located near the SiO/sub 2//high-/spl kappa/ interface. As the electron trapping induces a serious threshold voltage shift problem, a low trap density at the SiO/sub 2//high-/spl kappa/ interface is a key requirement for high-/spl kappa/ dielectric stack application and reliability in MOS devices.  相似文献   

7.
Low-frequency noise characteristics are reported for TaSiN-gated n-channel MOSFETs with atomic-layer deposited HfO/sub 2/ on thermal SiO/sub 2/ with stress-relieved preoxide (SRPO) pretreatment. For comparison, control devices were also included with chemical SiO/sub 2/ resulting from standard Radio Corporation of America clean process. The normalized noise spectral density values for these devices are found to be lower when compared to reference poly Si gate stack with similar HfO/sub 2/ dielectric. Consequently, a lower oxide trap density of /spl sim/4/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ is extracted compared to over 3/spl times/10/sup 18/ cm/sup -3/eV/sup -1/ values reported for poly Si devices indicating an improvement in the high-/spl kappa/ and interfacial layer quality. In fact, this represents the lowest trap density values reported to date on HfO/sub 2/ MOSFETs. The peak electron mobility measured on the SRPO devices is over 330 cm/sup 2//V/spl middot/s, much higher than those for equivalent poly Si or metal gate stacks. In addition, the devices with SRPO SiO/sub 2/ are found to exhibit at least /spl sim/10% higher effective mobility than RCA devices, notwithstanding the differences in the high-/spl kappa/ and interfacial layer thicknesses. The lower Coulomb scattering coefficient obtained from the noise data for the SRPO devices imply that channel carriers are better screened due to the presence of SRPO SiO/sub 2/, which, in part, contributes to the mobility improvement.  相似文献   

8.
High-performance low-temperature poly-Si thin-film transistors (TFTs) using high-/spl kappa/ (HfO/sub 2/) gate dielectric is demonstrated for the first time. Because of the high gate capacitance density and thin equivalent-oxide thickness contributed by the high-/spl kappa/ gate dielectric, excellent device performance can be achieved including high driving current, low subthreshold swing, low threshold voltage, and high ON/OFF current ratio. It should be noted that the ON-state current of high-/spl kappa/ gate-dielectric TFTs is almost five times higher than that of SiO/sub 2/ gate-dielectric TFTs. Moreover, superior threshold-voltage (V/sub th/) rolloff property is also demonstrated. All of these results suggest that high-/spl kappa/ gate dielectric is a good choice for high-performance TFTs.  相似文献   

9.
Deuterium was incorporated into the HfAlOx /SiON gate dielectric by the use of heavy water (D/sub 2/O) instead of H/sub 2/O in the atomic layer deposition (ALD) process of HfAlOx. The HfAlOx formed by D/sub 2/O-ALD acts as a deuterium reservoir, and the deuterium atoms are effectively incorporated into the SiON after full CMOS processing. It is clarified that the deuterium incorporation suppresses interfacial trap generation and interfacial SiON breakdown, while charge-trapping in the HfAlOx bulk traps is barely affected. The D/sub 2/O-ALD process is useful for improving the interfacial layer reliability under gate negative stress; therefore it is not only effective for HfAlOx, but also for high-/spl kappa//SiO/sub 2/(SiON) gate stacks with other high-/spl kappa/ materials such as HfO/sub 2/ or HfSiON.  相似文献   

10.
The impacts of O/sub 3/ or NH/sub 3/ interface treatments on the long-term V/sub th/ instability in nMOSFET HfO/sub 2/ high-/spl kappa/ gate stacks with TiN metal gate electrodes are compared. The NH/sub 3/ interface treatment is found to be beneficial to suppress the V/sub th/ shift compared to the O/sub 3/-treated samples. This is explained by an enhanced valence band electrons injection in O/sub 3/-treated samples and is experimentally confirmed through a carrier separation measurement. The dynamic stress measurement also indicates that trapped charges are more easily detrapped in NH/sub 3/-treated samples than O/sub 3/-treated samples, improving significantly the V/sub th/ stability.  相似文献   

11.
This paper describes an extensive experimental study of TiN/HfO/sub 2//SiGe and TiN/HfO/sub 2//Si cap/SiGe gate stacked-transistors. Through a careful analysis of the interface quality (interface states and roughness), we demonstrate that an ultrathin silicon cap is mandatory to obtain high hole mobility enhancement. Based on quantum mechanical simulations and capacitance-voltage characterization, we show that this silicon cap is not contributing any silicon parasitic channel conduction and degrades by only 1 /spl Aring/ the electrical oxide thickness in inversion. Due to this interface optimization, Si/sub 0.72/Ge/sub 0.28/ pMOSFETs exhibit a 58% higher mobility at high effective field (1 MV/cm) than the universal SiO/sub 2//Si reference and a 90% higher mobility than the HfO/sub 2//Si reference. This represents one of the best hole mobility results at 1 MV/cm ever reported with a high-/spl kappa//metal gate stack. We thus validate a possible solution to drastically improve the hole mobility in Si MOSFETs with high-/spl kappa/ gate dielectrics.  相似文献   

12.
We have studied the bias-temperature instability of three-dimensional self-aligned metal-gate/high-/spl kappa//Germanium-on-insulator (GOI) CMOSFETs, which were integrated on underlying 0.18 /spl mu/m CMOSFETs. The devices used IrO/sub 2/--IrO/sub 2/-Hf dual gates and a high-/spl kappa/ LaAlO/sub 3/ gate dielectric, and gave an equivalent-oxide thickness (EOT) of 1.4 nm. The metal-gate/high-/spl kappa//GOI p-and n-MOSFETs displayed threshold voltage (V/sub t/) shifts of 30 and 21 mV after 10 MV/cm, 85/spl deg/C stress for 1 h, comparable with values for the control two-dimensional (2-D) metal-gate/high-/spl kappa/-Si CMOSFETs. An extrapolated maximum voltage of -1.2 and 1.4 V for a ten-year lifetime was obtained from the bias-temperature stress measurements on the GOI CMOSFETs.  相似文献   

13.
In this letter, a novel dual high-/spl kappa/ approach, different high-/spl kappa/ dielectrics in nMOS and pMOS, with poly Si gate electrode is introduced. By turning the Fermi-pinning effect into an advantage, this dual high-/spl kappa/ approach achieved a lower V/sub tp/ and a symmetrical V/sub tn//V/sub tp/ over a wide range of channel lengths for potential high-/spl kappa//poly Si CMOS application. In addition to the V/sub t/ control, this approach also can improve the drive current ratio between nMOS and pMOS, which would further scale the CMOS area by reducing the pMOS width.  相似文献   

14.
The electrical characteristics of HfO/sub 2/ pMOSFETs prepared by B/sub 2/H/sub 6/ plasma doping and excimer laser annealing were investigated. Various metal gate electrodes were evaluated to protect the high-/spl kappa/ oxide during laser irradiation. Although the aluminum gate electrode showed superior reflectivity to the laser, the equivalent oxide thickness was increased due to the interaction between aluminum and HfO/sub 2/, which resulted in reduced capacitance. In contrast, the Al-TaN stacked gate showed good reflectivity up to laser energy of 500 mJ/cm/sup 2/ and improved capacitance was obtained compared with the Al gate. For the first time, the electrical characteristics of a HfO/sub 2/ pMOSFET with an Al-TaN gate fabricated by plasma doping and excimer laser annealing were demonstrated. It was also demonstrated that plasma doping and excimer laser annealing combined with a metal gate could be applied for high-/spl kappa/ oxide MOSFET fabrication.  相似文献   

15.
We have integrated the low work function NiSi:Hf gate on high-/spl kappa/ LaAlO/sub 3/ and on smart-cut Ge-on-insulator (SC-GOI) n-MOSFETs. At 1.4-nm equivalent oxide thickness, the NiSi:Hf-LaAlO/sub 3//SC-GOI n-MOSFET has comparable gate leakage current with the control Al gate on LaAlO/sub 3/-Si MOSFETs that is /spl sim/5 orders of magnitude lower than SiO/sub 2/. In addition, the LaAlO/sub 3//SC-GOI n-MOSFET with a metal-like fully NiSi:Hf gate has high peak electron mobility of 398 cm/sup 2//Vs and 1.7 times higher than LaAlO/sub 3/-Si devices.  相似文献   

16.
Charge in HfO/sub 2/ gate stacks grown from various metal-organic chemical vapor deposition sources has been studied using nMOS capacitors with a damage-free Cr gate process. It is found that the charge in the stack is mainly concentrated at the interfaces between materials. The effect of postdeposition anneal depends on the high-/spl kappa/ film-deposition chemistry. A forming gas anneal can reduce interface charge, hysteresis, and interface state densities for HfO/sub 2/ films grown from various sources. The marked difference in the annealing response of similar films deposited from different precursors, however, strongly suggests that charge in these stacks is related to the deposition chemistry and may be due to residual impurities or defects left in the film from the deposition.  相似文献   

17.
HfO/sub 2/ and HfSiON gate dielectrics with high-field electron mobility greater than 90% of the SiO/sub 2/ universal mobility and equivalent oxide thickness (EOT) approaching 1 nm are successfully achieved by co-optimizing the metal gate/high-k/bottom interface stack. Besides the thickness of the high-/spl kappa/ dielectrics, the thickness of the ALD TiN metal gate and the formation of the bottom interface also play an important role in scaling EOT and achieving high electron mobility. A phase transformation is observed for aggressively scaled HfO/sub 2/ and HfSiON, which may be responsible for the high mobility and low charge trapping of the optimized HfO/sub 2/ gate stack.  相似文献   

18.
We report the successful growth of MOS capacitor stacks with low temperature strained epitaxial Ge or Si/sub 1-x/Ge/sub x/(x=0.9) layer directly on Si substrates, and with HfO/sub 2/(EOT=9.7 /spl Aring/) as high-/spl kappa/ dielectrics, both using a novel remote plasma-assisted chemical vapor deposition technique. These novel MOS capacitors, which were fabricated entirely at or below 400/spl deg/C, exhibit normal capacitance-voltage and current-voltage characteristics.  相似文献   

19.
High work function (4.9 eV) on high-/spl kappa/ gate dielectric, which is suitable for bulk p-MOSFET, has been achieved using fully silicided (FUSI) Pt/sub x/Si gate without boron predoping of polysilicon. High concentration of Pt in FUSI Pt/sub x/Si using Ti capping layer on Pt in the FUSI process is a key to achieving high work function and reduced Fermi-level pinning on high-/spl kappa/ dielectric. By combining with substituted Al (SA) gate for nMOSFET, a wide range of work function difference (0.65 eV) between n and pMOSFETs is demonstrated, without any adverse effects of polysilicon predoping.  相似文献   

20.
A gate-first self-aligned Ge n-channel MOSFET (nMOSFET) with chemical vapor deposited (CVD) high-/spl kappa/ gate dielectric HfO/sub 2/ was demonstrated. By tuning the thickness of the ultrathin silicon-passivation layer on top of the germanium, it is found that increasing the silicon thickness helps to reduce the hysteresis, fixed charge in the gate dielectric, and interface trap density at the oxide/semiconductor interface. About 61% improvement in peak electron mobility of the Ge nMOSFET with a thick silicon-passivation layer over the CVD HfO/sub 2//Si system was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号