首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 828 毫秒
1.
TiO_2对PP/MPP/PEPA膨胀阻燃体系的协同作用   总被引:3,自引:0,他引:3  
以TiO2为阻燃协效剂,采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了具有良好阻燃性能的无卤阻燃聚丙烯(PP)。研究了TiO2用量对PP阻燃性能和协效作用的影响。结果表明:添加少量的TiO2即可显著提高PP的阻燃性能;当MPP/PEPA/TiO2添加量分别为12%、8%和1%时,阻燃PP的氧指数高达31.5。TGA和FTIR分析及SEM和体式显微镜观测结果表明:添加TiO2可以催化MPP/PEPA间的酯化反应,促进体系成炭,形成更致密的炭层,从而提高材料的阻燃性能。  相似文献   

2.
硼酸锌对MPP/PEPA阻燃PP性能的影响   总被引:1,自引:0,他引:1  
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了具有良好阻燃性能的无卤阻燃PP。研究了MPP/PEPA质量比和硼酸锌(ZB)用量对PP阻燃和力学性能的影响。结果表明:MPP/PEPA质量比为3∶2时,复配效果最好;添加少量的ZB即可显著提高材料的阻燃性能;当MPP/PEPA/ZB添加量分别为12%、8%和2%时,阻燃PP的氧指数高达35%,并具有较好的力学性能。TGA结果表明:添加ZB可以起催化MPP/PEPA酯化,促进成炭的作用;SEM分析表明,ZB可以起到稳定炭层,增加炭层厚度的作用。  相似文献   

3.
以碳酸镍(NC)为阻燃协效剂,采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了具有良好阻燃性能的无卤阻燃聚丙烯(PP/IFR)。研究了NC用量对PP阻燃性能的影响,并分析了其阻燃协同作用机理。结果表明,添加少量的NC即可显著提高PP的阻燃性能;当NC添加量为3%时,阻燃PP的氧指数高达37.5%。TGA、FT-IR分析和体式显微镜、SEM观测结果表明,添加NC可以催化MPP/PEPA间的酯化反应,形成更多的交联网络结构,促进PP/IFR体系成炭,形成更致密的炭层,从而提高材料的阻燃性能。  相似文献   

4.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配阻燃剂,制备了具有良好阻燃性能的无卤阻燃PP,研究了碳酸镍(NC)用量对PP阻燃和力学性能的影响。结果表明:添加少量的NC即可显著提高材料的阻燃性能;当MPP/PEPA/NC用量分别为12%、8%和3%时,阻燃PP的氧指数高达37.5%,并具有较好的力学性能。TGA和EDX分析结果表明:添加NC可以催化MPP/PEPA间的酯化反应,促进材料成炭,并且在炭层中保留了更多的磷;SEM分析表明,NC可以起到稳定炭层,增加炭层厚度的作用。  相似文献   

5.
利用三聚氰胺聚磷酸盐(MPP)和笼状季戊四醇磷酸酯(PEPA)的阻燃协效作用,复配成膨胀型阻燃剂(IFR)对聚丙烯(PP)/稻壳(RH)复合材料进行阻燃。研究了MPP与PEPA复配比例对PP/RH复合材料阻燃性能的影响。采用垂直燃烧(UL-94)和极限氧指数(LOI)研究了阻燃PP/RH复合材料的阻燃性能,采用热重分析研究阻燃PP/RH复合材料的热分解过程,采用扫描电镜(SEM)观察阻燃PP/RH复合材料燃烧后炭层的形貌。结果表明:当MPP/PEPA总用量为20%(wt%,质量分数),PEPA和MPP的质量分数比为1∶4时,阻燃PP/RH复合材料的LOI值为29.7%,垂直燃烧UL-94通过V-0级,PP/RH复合材料的拉伸强度和弯曲强度分别增加了42.3%和53.6%。热重结果表明:MPP/PEPA复配能够延缓PP/RH体系中PP的分解,并提高了材料的成炭性,使PP/RH复合材料800℃下的残炭率由16.3%提高到了30.3%,残炭率升高了14.0%。通过SEM观察得到:两者复配使PP/RH复合材料燃烧后形成了致密均匀的多孔炭层,从而提高了PP/RH复合材料的阻燃性能。  相似文献   

6.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配成膨胀型阻燃剂,氧化镧(La2O3)为阻燃协效剂,制备了阻燃性能良好的膨胀型阻燃聚丙烯复合材料(PP/IFR)。研究了La2O3用量对PP/IFR体系阻燃性能的影响及阻燃协同作用机理。结果表明,添加少量的La2O3可显著提高PP的阻燃性能;当La2O3质量分数为1%时,PP/IFR的氧指数高达31.0%。热重分析(TGA)、红外光谱(FT-IR)、激光拉曼光谱(LRS)分析和电子扫描显微镜(SEM)观测结果表明,添加La2O3能促进残炭转化为聚芳烃结构,形成更多的结晶碳,提高炭层的强度,并催化IFR的酯化交联反应,形成更多的P-O-P和P-O-C交联网络结构。  相似文献   

7.
采用多聚磷酸蜜胺(MPP)和笼状季戊四醇磷酸酯(PEPA)复配成膨胀型阻燃剂,氧化镧(La2O3)为阻燃协效剂,制备了阻燃性能良好的膨胀型阻燃聚丙烯复合材料(PP/IFR)。研究了La2O3用量对PP/IFR体系阻燃性能的影响及阻燃协同作用机理。结果表明,添加少量的La2O3可显著提高PP的阻燃性能;当La2O3质量分数为1%时,PP/IFR的氧指数高达31.0%。热重分析(TGA)、红外光谱(FT-IR)、激光拉曼光谱(LRS)分析和电子扫描显微镜(SEM)观测结果表明,添加La2O3能促进残炭转化为聚芳烃结构,形成更多的结晶碳,提高炭层的强度,并催化IFR的酯化交联反应,形成更多的P-O-P和P-O-C交联网络结构。  相似文献   

8.
以新型三嗪成炭发泡剂CFA和聚磷酸铵(APP)组成的膨胀阻燃体系n-IFR,4A分子筛作为协效剂,制备了无卤阻燃共聚酯(PES)热熔胶。研究了n-IFR含量对PES阻燃性能的影响及n-IFR/4A分子筛的协效作用。结果表明,少量4A分子筛可显著提升n-IFR的阻燃性能。阻燃剂添加量为25%时,阻燃PES氧指数达34.0%,垂直燃烧达V-0级和VTM-0级。锥形量热仪、热重分析、扫描电镜及X射线光电子能谱分析表明,少量4A分子筛可催化n-IFR酯化反应,促进体系形成具有很好抗氧化能力的致密炭层,进一步提高了凝聚相的阻燃性。  相似文献   

9.
4A分子筛对MPP阻燃PA6性能的影响   总被引:2,自引:0,他引:2  
以恒温聚合得到的三聚氛胺聚磷酸盐(MPP)为阻燃剂,4A分子筛为协效剂,制备了阻燃PA6.研究了4A分子筛用量对阻燃PA6性能的影响.结果表明,少量的分子筛便可以显著提高PA6的阻燃性能,在加速体系成炭的同时使炭层结构发生变化.当MPP、4A分子筛质量分数分别为20%、4%时,阻燃PA6的氧指数可以达到30%,拉伸强度...  相似文献   

10.
用DOPO(9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物)对介孔分子筛MCM-41进行表面改性,将改性后的MCM-41作为阻燃协效剂与聚磷酸铵(APP)、季戊四醇(PER)及三聚氰胺(MEL)复配阻燃剂,研究了添加改性MCM-41对PP阻燃性能、力学性能和热性能的影响。结果表明,添加少量DOPO改性分子筛即可显著提高PP的阻燃性能,当改性分子筛的添加量为1%时阻燃PP的氧指数为32.6,比纯PP的提高91.76%;热重分析、动态热机械能分析和扫描电镜分析的结果表明,添加少量的改性分子筛MCM-41可催化APP/PER/MEL间的酯化反应,促进体系成炭,形成更紧密的炭层,从而提高材料的阻燃性能。  相似文献   

11.
以苯基三甲氧基硅烷为单体,通过水解缩聚法,在碱性条件下合成微米苯基硅树脂微球(PPSQ)。将PPSQ和膨胀型阻燃剂密胺焦磷酸盐(MPP)、季戊四醇(PER)加入聚丙烯(PP)进行阻燃处理,应用锥形量热和热重分析评价该体系的阻燃性能和微米PPSQ的阻燃协同效应。当微米PPSQ加入量达到8%时,整个体系的失重曲线向高温方向...  相似文献   

12.
Abstract

Polypropylene (PP) is a general-purpose plastic, but some applications are constrained by its high flammability. Thus, flame retardant PP is urgently demanded. In this article, intumescent flame retardant PP (IFRPP) composites with enhanced fire safety were prepared using 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) functionalized graphene oxide (PGO) as synergist. The PGO was prepared through a mild chemical reaction by the covalent attachment of a caged-structure organic compound, PEPA, onto GO nanosheets using toluene diisocynate (TDI) as the intermediary agent. The novel PEPA-functionalized graphene oxide not only improves the heat resistance of GO but also converts GO and PEPA from hydrophobic to hydrophilic materials, which leads to even distribution in PP. In our case, 7 wt% addition of PGO as one of the fillers for IFRPP composites significantly reduces its inflammability and fire hazards when compared with PEPA, by the improvement of first release rate peak (PHRR), total heat release, first smoke release rate peak (PSRR) and total smoke release, suggesting its great potential as the IFR synergist in industry. The reason is mainly attributed to the barrier effect of the unburned graphene sheets, which protects by the decomposition products of PEPA and TDI, promotes the formation of graphitized carbon and inhibits the heat and gas release.  相似文献   

13.
Polypropylene (PP) is a general-purpose plastic, but some applications are constrained by its high flammability. Thus, flame retardant PP is urgently demanded. In this article, intumescent flame retardant PP (IFRPP) composites with enhanced fire safety were prepared using 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) functionalized graphene oxide (PGO) as synergist. The PGO was prepared through a mild chemical reaction by the covalent attachment of a caged-structure organic compound, PEPA, onto GO nanosheets using toluene diisocynate (TDI) as the intermediary agent. The novel PEPA-functionalized graphene oxide not only improves the heat resistance of GO but also converts GO and PEPA from hydrophobic to hydrophilic materials, which leads to even distribution in PP. In our case, 7 wt% addition of PGO as one of the fillers for IFRPP composites significantly reduces its inflammability and fire hazards when compared with PEPA, by the improvement of first release rate peak (PHRR), total heat release, first smoke release rate peak (PSRR) and total smoke release, suggesting its great potential as the IFR synergist in industry. The reason is mainly attributed to the barrier effect of the unburned graphene sheets, which protects by the decomposition products of PEPA and TDI, promotes the formation of graphitized carbon and inhibits the heat and gas release.  相似文献   

14.
无卤阻燃PES热熔胶的制备与阻燃性能   总被引:1,自引:0,他引:1  
以聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)组成的膨胀阻燃体系(IFR)作为阻燃剂,以4A分子筛作为协效剂,制备了无卤阻燃共聚酯(PES)热熔胶。研究了IFR对PES阻燃性能的影响及4A分子筛的协效作用。结果表明,少量4A分子筛可促进IFR的阻燃作用。IFR添加量为30%时,阻燃PES氧指数达30.7%,垂直燃烧达V-0级,最大热释放速率大幅降低;加入3%的4A分子筛,氧指数达35.1%。热重分析(TG)、扫描电镜(SEM)及X射线光电子能谱(XPS)结果表明,少量4A分子筛可催化IFR酯化反应,促进体系形成致密炭层,高温时4A分子筛分解并参与成炭反应,稳定炭层。  相似文献   

15.
双环笼状磷酸酯类膨胀阻燃聚丙烯的研究   总被引:12,自引:0,他引:12  
以笔者自行合成的两种双环笼状磷酸酯Trimer和PEPA(其结构见正文)为基的膨胀型阻燃剂阻燃PP,测定了阻燃PP的加,和UL-94阻燃性能,并利用锥形量热仪(CONE)测试了其释热速率(HRR)、总释热量(THR)、质量损失速率(MLR)、生烟量及有毒气体释放量等多种燃烧参数。阻燃PP与纯PP相比,HRR、THR及MLR分别降低约70%、60%及50%。  相似文献   

16.
SiO2和Al2O3对PP/APP/PER膨胀阻燃体系的协同作用   总被引:28,自引:0,他引:28  
聚丙烯/聚磷酸铵/季戊四醇(PP/APP/PER)是一典型的无卤膨胀体系,文中结合氧指数(LOI)及热失重分析(TGA)实验配合锥形量热仪(CONE)研究了SiO2和Al2O3对该膨胀体系阻燃、抑烟的协同作用。与文献[1]的比较表明,不具有分子筛笼形结构的SiO2或Al2O3同样也具有促进PP/APP/PER体系凝缩相快速成灰、稳定炭层、降低热释放及烟释放的作用;说明硅铝酸盐的物理结构不是影响膨胀阻燃协同作用的主要因素。  相似文献   

17.
用CONE/TG研究含淀粉膨胀阻燃聚丙烯体系的阻燃和烟释放   总被引:12,自引:0,他引:12  
利用锥形量热仪(CONE)在50kW/m^2热辐照条件下,并配合TG和极限氧指数(LOI)对含淀粉膨胀阻燃聚丙烯(PP)体系的阻燃和烟释放进行了研究,通过对获得的最大热释放速率(pk-HRR),总烟释放量(TSP)、平均比消光面积(av-SEA)及质量损失速度燃烧热(av-EHC)、最大烟产生速率(pk-SPR)、总烟释放量(TSP)、平均比消光面积(av-SEA)及质量损失速度(MLR)等参数和  相似文献   

18.
利用有机杂环磷酸酯1, 2, 3-三(5, 5-二甲基-1, 3-二氧杂环己内磷酸酯基)苯(FR)、聚磷酸铵(APP)和三聚氰胺(MEL)制备新型无卤三源膨胀阻燃聚丙烯(IFR/PP)材料, 通过极限氧指数(LOI)、水平燃烧(UL-94)、热重分析法(TGA)、锥形量热(cone)等方法研究了IFR对聚丙烯阻燃性能影响。结果表明: 当IFR总添加质量分数为30%(FR∶APP∶MEL质量比为4∶8∶3), 阻燃IFR/PP的LOI 达到36.2%, 其热释放速率峰值(pk-HRR)、热释放速率平均值(av-HRR)、有效燃烧热平均值(av-EHC)、比消光面积平均值(av-SEA)、质量损失速率平均值(av-MLR)及一氧化碳释放率平均值(av-CO)相对未阻燃PP分别降低75.9%、71.7%、76.4%、74.6%、58.3%和50.0%, 300 s时CO释放量接近0, 呈现出良好的阻燃、抑烟和抑毒性能; SEM研究表明, IFR催化PP在燃烧初期形成了致密、坚硬的优质炭层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号