首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
K. Endo  H. Goto 《Wear》1976,38(2):311-324
Fretting fatigue tests of a carbon steel were carried out. Fatigue cracks were measured by means of electrical resistance and observed with a scanning electron microscope. The mechanism of fretting fatigue failure is discussed from the experimental results. Small fatigue cracks are initiated early in life and some grow to be propagating cracks. Cracks grow to a given depth by tangential stress combined with repeated stress and then propagate with repeated stress alone, causing a knee point in the propagation curve. Fretting fatigue damage is saturated in the first 20–25 % of life which coincides with the knee point. The condition of non-propagating cracks is also known.  相似文献   

2.
Kyungmok Kim  Jean Geringer 《Wear》2012,274(1-2):497-503
This paper analyses energy dissipation of fretting corrosion in total hip prosthesis. Fretting corrosion is arisen between metallic prosthesis and bone and/or bone cement, leading to aseptic loosening. In this study, fretting corrosion tests are conducted in Ringer's solution. Stainless steel (316L) and poly (methyl methacrylate) are used for total hip prosthesis. Various potentials are applied in fretting corrosion tests and then dissipated energy is determined with number of cycles. Results show that dissipated energy is rapidly accumulated during the initial running-in period and accumulation of dissipated energy change can be expressed with a power-law form. After the initial running-in period, dissipated energy is linearly accumulated with respect to number of cycles. It is identified that a parameter in the power-law relation can describe the influence of applied potentials in fretting corrosion. In addition, the parameter shows relation to wear volume measured in stainless steel.  相似文献   

3.
To clarify the effect of hydrogen gas on fretting fatigue strength of the materials, which supposed to be used for hydrogen utilization machines, fretting fatigue tests were conducted in hydrogen gas. It is important to take fretting fatigue into account in strength design, because many fatigue failure accidents have occurred at joints or contact parts between components. As a part of the experiments, an austenitic stainless steel was focused in this paper. The material was SUS 304. Fretting fatigue strength in hydrogen gas decreased compared with that in air. Tangential force coefficient increased in the reverse order of fretting fatigue strength. Therefore, one of the reasons of the decrease of fretting fatigue strength was that tangential force was different depending on the environment. Absorption of hydrogen occurred during fretting in hydrogen gas was detected. The absorption could be considered as one of the causes of the decrease of fretting fatigue strength, since fretting fatigue life of pre-charged specimen was decreased and also the crack propagation threshold of short fatigue crack was reduced by hydrogen charge.  相似文献   

4.
This study investigates the effects of thickness, hardness and composition of modified layer on the plain and fretting fatigue properties of the nitrided 316 L steel plasma nitrided under various processing conditions. Fretting fatigue behaviour of untreated and nitrided material is also analysed with the finite element method. Experimental and theoretical fatigue life results are compared. The result indicates that the nitriding process improved the fretting fatigue properties of 316 L stainless steel. The experimental test results are close to theoretical fretting fatigue life results, thus it yields that the established model in the numerical analysis is consistent in this regard.  相似文献   

5.
《Tribology International》2012,45(12):1979-1986
This study investigates the effects of thickness, hardness and composition of modified layer on the plain and fretting fatigue properties of the nitrided 316 L steel plasma nitrided under various processing conditions. Fretting fatigue behaviour of untreated and nitrided material is also analysed with the finite element method. Experimental and theoretical fatigue life results are compared. The result indicates that the nitriding process improved the fretting fatigue properties of 316 L stainless steel. The experimental test results are close to theoretical fretting fatigue life results, thus it yields that the established model in the numerical analysis is consistent in this regard.  相似文献   

6.
Fretting fatigue tests of the extruded AZ61 magnesium alloy with the same contact material under low and high humidity were carried out to investigate basic fretting fatigue characteristics and effect of humidity on fretting fatigue behavior. Influence of contact material was also studied by using JIS S45C carbon steel contact material. Degradation of fatigue strength due to fretting was much more significant than that due to corrosion under high humidity condition. Therefore, no effect of humidity on fretting fatigue strength was found. Reduction rate of fatigue strength due to fretting for the magnesium alloy was between those of aluminum alloys and titanium alloys. Tangential force coefficient of the magnesium alloy was rather low compared to other materials such as steels, aluminum alloys and titanium alloys. Fretting fatigue strength with the S45C contact material was inferior compared to that with the same contact material. This is mainly due to higher tangential force in AZ61/S45C contact. Fretting fatigue cracks at the edge of fretting contact region were observed to nucleate in the very early stage of fatigue life, similar to other structural materials.  相似文献   

7.
Jean Geringer  Bernard Forest 《Wear》2006,261(9):971-979
In the biomedical field, about 6% of the hip total prostheses must be replaced after 9 years. One of the main causes of the aseptic loosening may be attributed to fretting corrosion between the prosthesis and the bone cement. To understand this degradation, a fretting test between a stainless steel, 316L and PMMA has been used in Ringer solution. Fretting maps for the contact 316L/PMMA were determined in air and in Ringer solution. It has been shown that the lubricant effect of the aqueous environment shifts the gross slip/partial slip transition towards larger normal forces or lower displacements.To understand the fretting degradation behaviour of 316L against PMMA, fretting corrosion experiments have been investigated under constant applied potential. The first conclusion is that the dissipated energy is maximum at about −600 mV/SCE. The wear on PMMA does not depend on the applied potential. Moreover, the wear coefficient is lower than that in air due to the lubricant effect of the Ringer solution. Wear on 316L depends on the applied potential. The wear volume is minimum at −600 mV/SCE although the dissipated energy is maximum. The wear on 316L in Ringer solution is attributed to a dissolution process due to the local destruction of the passive film by fretting. The effect of potential on the wear of 316L may be accounted for by changes in the aqueous environment confined in the contact zone due to a restricted mass transport from the bulk solution and to the large local current densities consecutive to the destruction of the passive film. Accordingly, the wear volume on 316L is correlated to the time. Finally, the proton reduction, inside the contact, is believed to contribute significantly to the dissolution process.  相似文献   

8.
Fretting fatigue is a combination of two complex mechanical phenomena, namely, fretting and fatigue. Fretting appears between components that are subjected to small relative oscillatory motion. Once these components undergo cyclic fatigue load at the same time, fretting fatigue occurs. Fretting fatigue is an important issue in aerospace structural design. Many studies have investigated fretting fatigue behavior; however, the majority have assumed elastic deformation and very few have considered the effect of plasticity. The main goal of this study is to monitor the effect of different fretting fatigue primary variables on localized plasticity in an aluminum alloy (Al 2024-T3) test specimen. In order to extract the stress distribution at the contact interface under elasto-plastic conditions, a modified finite element contact model was used. The contact model was verified through comparison with an elastic analytical solution. Then, a bilinear elasto-plastic isotropic hardening model with a von Mises yield surface was implemented to simulate the material behavior of the aluminum alloy. The effect of different fretting fatigue primary variables, such as axial stress, contact geometry, and coefficient of friction, on localized plasticity was investigated. Finally, the relationship between the location of maximum localized plasticity and Ruiz fretting damage parameter with the crack initiation site is discussed.  相似文献   

9.
Studies of explanted hip prostheses have shown high wear rates of ultra-high molecular weight polyethylene (UHMWPE) acetabular cups and roughening of the surface of the metallic femoral head. Bone and bone cement particles have also been found in the articulating surfaces of some joints. It has been proposed that bone or bone cement particles may cause scratching and deterioration in the surface finish of metallic femoral heads, thus producing increased wear rates and excessive amounts of wear debris. Sliding wear tests of UHMWPE pins on stainless steel have been performed with particles of different types of bone and bone cement added. Damage to the stainless steel counterface and the motion of particles through the interface have been studied. Particles of bone cement with zirconium and barium sulphate additives and particles of cortical bone scratched the stainless steel counterface. The cement particles with zirconium additive produced significantly greater surface damage. The number of particles entering the contact and embedding in the UHMWPE pin was dependent on particle size and geometry, surface roughness and contact stress. Particles are likely to cause surface roughening and increased wear rates in artificial joints.  相似文献   

10.
R.B. Waterhouse 《Wear》1975,34(3):301-309
Metallic materials for use in corrosive environments are almost entirely of the type which derive their corrosion resistance from a protective oxide film which may withstand the effects of fatigue and creep, but which is completely disrupted by fretting. This may have serious consequences, for example, in a nuclear reactor where a stainless steel structure may be operating at a high temperature in an oxidising atmosphere. Not only will disruption of the normally protective oxide film allow corrosion to continue, it may also enhance corrosion since the protective film is rich in chromium and the metal surface is therefore depleted in chromium and has a lower corrosion resistance than the original surface. In certain designs of diesel engine lands on the outer surface of the cylinder liner bear on corresponding lands on the cylinder block forming a seal separating the region of the exhaust gases and the region of the cooling water which may contain antifreeze. Fretting due to vibration allows these environments to gain access to the seal surfaces resulting in accelerated fretting damage with rapid breakdown of the seal. A third example is that of the surgical implant. The importance of corrosion resistance here is that corrosion products can be toxic to surrounding tissue. Fretting between the surfaces of screwholes in the implant and the underside of the heads of screws used to fix it into the bone can result in toxic soluble corrosion products being released into the body fluid.  相似文献   

11.
K. Endo  H. Goto 《Wear》1978,48(2):347-367
Fretting fatigue tests of a carbon steel and an aluminum alloy were carried out in various environments and the effects of oxygen and water vapor were investigated by tangential force measurements, the initiation and propagation of cracks and hardness and structural changes of the damaged surface layer. With carbon steel the effect of water vapor is negligible but oxygen has a deleterious effect on the initiation and propagation of fretting fatigue cracks. However, with an aluminum alloy the effect of oxygen is small but water vapor accelerates the initiation and propagation of cracks. Environmental effects are more dominant than the stress conditions with an aluminum alloy; material softening and structural change of the surface layer occur.  相似文献   

12.
Tribological properties of TiO2 coatings synthesized by micro-arc oxidation (MAO) on the surface of TC4 titanium alloys were investigated at the fretting contact against 440C stainless steel in simulated body fluid (SBF). Fretting experiments were carried out by ball-on-flat contact at various loads for 1 h, with an amplitude of 100 μm and a frequency of 5 Hz. Results show that MAO TiO2 coatings presented good tribological properties with lower friction coefficient in SBF. Less wear volume was observed for MAO TiO2 coatings compared with that for TC4 alloy. At lower load, the wear mechanism of MAO TiO2 coatings was dominated to abrasive wear. With an increase of normal load, however, fretting corrosion increased due to chemical reactions with SBF, and therefore, fretting fatigue coexisting with abrasive wear became the predominant mode.  相似文献   

13.
通过316L奥氏体不锈钢在420、550和600℃下非间断应变疲劳和有保持时间的应变疲劳试验,对316L钢高温环境下疲劳、蠕变规律进行了研究。结果表明:材料的疲劳寿命随温度的升高而降低;保持时间增加,试样中蠕变损伤增大,循环应力松弛更多,裂纹扩展机制由穿晶方式向沿晶方式转变。  相似文献   

14.
Bending fretting fatigue tests of 316L austenitic stainless steel plates against 52100 steel cylinders have been carried out under same normal load and varied bending loads. Tests of plain bending fatigue were carried out as a control group. The S-N curves of the bending fatigue were made. The results indicated that there was an obvious drop of life under the condition of bending fretting fatigue due to higher local contact stress. A dislocation model of micro-crack nucleation mechanism, as a manner of zig-zag mode, was created to explain the nucleation of fretting fatigue cracks.  相似文献   

15.
《Wear》1986,110(1):19-34
The effect of frequency of vibration on fretting wear has been investigated in the 10 – 1000 Hz range with additional experiments at 20 000 Hz. Fretting tests were performed with two materials, a low carbon steel (AISI 1018) and an austenitic stainless steel (AISI 304). The experiments showed that two cases of fretting contact can be distinguished and related to the displacement amplitude. If the amplitude is low, the contact situation is characterized by partial stick at the interface. At these conditions the wear rate (measured as the volume of material removed per cycle) is little affected by frequency. However, in low amplitude fretting material damage by surface degradation and fatigue crack initiation is usually of more concern than the actual wear itself. Both of these parameters are found to be greatly accelerated by an increase in frequency. In high amplitude fretting, in contrast, gross slip occurs at the interface and wear becomes the dominant damage mode. At these conditions variations in frequency appear to have little effect on fretting wear and related mechanisms. Therefore, in the case of fretting at high displacement amplitudes, it may be possible to apply high frequency fretting to obtain accelerated testing conditions.  相似文献   

16.
压印连接是近年来新兴的连接方式,因其具有简单高效、低耗环保等优点,使得在应用连接方面越来越受到重视。疲劳破坏是机械构件失效的主要形式,疲劳过程中的微动磨损是造成零部件失效的主要原因之一。基于以上条件,对铝合金压印接头的疲劳性能进行了试验研究,结果显示疲劳失效部位主要集中在下板靠近压印点处,断口处发现大量微动磨屑,经能谱分析可以确定磨屑成分主要为氧化铝和金属铝;对疲劳失效断口和微动磨损区域进行了扫描电镜分析,发现压印接头的微动磨损部位主要分为两类,并对其进行了定义,一类定义为颈部微动磨损,另一类定义为环点板间微动磨损。分析发现颈部微动磨损所占比例随着外加载荷的大小而变化,且微动磨损是导致压印接头疲劳失效的重要因素。  相似文献   

17.
Fretting fatigue is a combination of two complex mechanical phenomena. Fretting appears between components that are subjected to small relative oscillatory motions. Once these connected components undergo cyclic fatigue load, fretting fatigue occurs. In general, fretting fatigue failure process can be divided into two main portions, namely crack initiation and crack propagation. Fretting fatigue crack initiation characteristics are very difficult to detect because damages such as micro-cracks are always hidden between two contact surfaces.In this paper Continuum Damage Mechanics (CDM) approach in conjunction with Finite Element Analyses (FEA) is used to find a predictor tool for fretting fatigue crack initiation lifetime. For this purpose an uncoupled damage evolution law is developed to model fretting fatigue crack initiation lifetime at various fretting condition such as contact geometry, axial stress, normal load and tangential load. The predicted results are validated with published experimental data from literature.  相似文献   

18.
Fretting fatigue behavior of the sensitized SUS304 stainless steel under a pressurized hot water at 7.3 MPa and 288 °C was investigated. The tests were carried out under a contact pressure of 100 MPa and a frequency of 20 Hz. From the experimental result, combined effect of pressurized hot water and localized high tangential stress due to fretting resulted in nucleation of intergranular crack along the outer edge of contact region at lower stress amplitudes, while a fretting fatigue crack was nucleated at the highest tangential force point independently from these intergranular cracks at higher stress amplitudes. No intergranular crack nucleation was observed for fretting fatigue at the same temperature in air. The higher stress ratio reduced the fatigue strength, where the crack tip was exposed more in corrosive environment due to the high mean stress compared to the lower stress ratio.  相似文献   

19.
Fretting of AISI 301 stainless steel sheet in contact with AISI 52100 steel from 20 °C to 550 °C in air and argon has been studied. Transitions in the mechanical properties of 301SS and oxidative behavior of this pair have been identified as a function of temperature. Strength and ductility of 301SS is reduced from 20 °C to 250 °C, increasing susceptibility to fretting damage. Steady state friction decreases as temperature increases, reducing cyclic stresses. Wear resistance increases in this temperature range, increasing fatigue damage due to the increase in fatigue life associated with increased wear. This study aims to identify the causes of the transitions in behavior and determine the net outcome of the competing effects with regard to fatigue damage.  相似文献   

20.
针对爆破片服役过程中的疲劳破坏失效问题,以316L不锈钢为材料,采用试验检测结合数值模拟解析的方法对平板普通型爆破片开展相关研究。试验结果表明,平板普通型316L不锈钢爆破片的临界爆破压力P b=26.07 MPa,在0.8 P b(20.86 MPa)应力循环作用1000~8000次后,爆破压力逐步下降至21.87 MPa,在20.86 MPa恒定应力循环作用下爆破片的平均疲劳寿命为13175次。采用ABAQUS软件,针对平板普通型316L不锈钢爆破片进行静态断裂力学分析,进而结合FE_SAFE软件,可以较准确地预测不同应力水平循环作用下的疲劳寿命。相关研究为爆破片疲劳寿命预测提供了新思路,这对其安全服役有着重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号