首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hot deformation characteristics of Haynes230 has been investigated in the temperature range 1050–1250 °C and strain rate range 0.001–10 s?1 using hot compression tests. Power dissipation map for hot working are developed on the basis of the Dynamic Materials Model. The map exhibits two domains of dynamic recrystallization (DRX): one occurring in the temperature range of 1200–1250 °C and in the strain rate range of 0.001–0.03 s?1, which associated with grain coarsening; the other occurring in the temperature range of 1100–1200 °C and strain rate range of 0.001–0.01 s?1, which are the optimum condition for hot working of this material. The average apparent activation energy for hot deformation is calculated to be 449 kJ/mol. The material undergoes flow instabilities at temperatures of 1050–1100 °C and at strain rates of 1–10 s?1, as predicted by the continuum instability criterion. The manifestations of the instabilities have been observed to be adiabatic shear bands which are confirmed by optical observation.  相似文献   

2.
《Intermetallics》2006,14(10-11):1231-1237
The deformation behavior of an Fe–28Al–5Cr–0.08Zr–0.04B (at.%) intermetallic alloy under hot compression conditions was characterized in the temperature range of 600–1100 °C and strain rate range of 0.001–100 s−1. Processing maps were calculated to evaluate the efficiency of the hot working and to recognize the instability regions of the flow behavior. The investigated alloy possesses the optimum hot-working conditions at 1100 °C and 0.001 s−1, since the material undergoes dynamic recrystallization to produce a fine-grained structure with a high fraction of high-angle boundaries (∼70%). At lower temperature the material exhibited “large grained superplasticity” with a peak efficiency of ∼60% at 1000 °C and 0.001 s−1. These parameters are the optimum ones for superplastic working of that alloy. The occurrence of large grained superplasticity is attributed to the formation of a subgrain structure within the large original grains and higher strain-rate sensitivity. The material also exhibits flow instabilities due to flow localization at lower temperatures (<700 °C) and higher strain rates (>0.1 s−1).  相似文献   

3.
Hot deformation behavior of extrusion preform of the spray-formed Al–9.0Mg–0.5Mn–0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300–450 °C and strain rate range of 0.01–10 s?1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 °C and strain rate of 1 s?1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (>15°) was 34%. While increasing the deformation temperature to 400 °C and decreasing the strain rate to 0.1 s?1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al–9.0Mg–0.5Mn–0.1Ti alloy were in the deformation temperature range of 340–450 °C and the strain rate range of 0.01–0.1 s?1 with the power dissipation efficiency range of 38%–43%.  相似文献   

4.
The microstructure and mechanical properties of extruded Mg-Zn alloy containing Y element were investigated in temperature range of 300–450 °C and strain rate range of 0.001–1 s?1 through hot compression tests. Processing maps were used to indicate optimum conditions and instability zones for hot deformation of alloys. For Mg-Zn and Mg-Zn-Y alloys, peak stress, temperature and strain rate were related by hyperbolic sine function, and activation energies were obtained to be 177 and 236 kJ/mol, respectively. Flow curves showed that the addition of Y element led to increase in peak stress and decrease in peak strain, and indicated that DRX started at lower strains in Mg-Zn-Y alloy than in Mg-Zn alloy. The stability domains of Mg-Zn-Y alloy were indicated in two domains as 1) 300 °C, 0.001 s?1; 350 °C, 0.01–0.1 s?1 and 400 °C, 0.01 s?1 and 2) 450 °C, 0.01–0.1 s?1. Microstructural observations showed that DRX was the main restoration mechanism for alloys, and fully dynamic recrystallization of Mg-Zn-Y alloy was observed at 450 °C. The instability domain in Mg-Zn-Y alloy was located significantly at high strain rates. In addition, the instability zone width of Mg-Zn and Mg-Zn-Y alloys increased with increasing strain, and cracks, twins and severe deformation were considered in these regions.  相似文献   

5.
An AlCrCuNiFeCo high entropy alloy (HEA), which has simple face centered cubic (FCC) and body centered cubic (BCC) solid solution phases as the microstructural constituents, was processed and its high temperature deformation behaviour was examined as a function of temperature (700–1030 °C) and strain rate (10−3–10−1 s−1), so as to identify the optimum thermo-mechanical processing (TMP) conditions for hot working of this alloy. For this purpose, power dissipation efficiency and deformation instability maps utilizing that the dynamic materials model pioneered by Prasad and co-workers have been generated and examined. Various deformation mechanisms, which operate in different temperature–strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate two distinct deformation domains within the range of experimental conditions examined, with the combination of 1000 °C/10−3 s−1 and 1030 °C/10−2 s−1 being the optimum for hot working. Flow instabilities associated with adiabatic shear banding, or localized plastic flow, and or cracking were found for 700–730 °C/10−3–10−1 s−1 and 750–860 °C/10−1.4–10−1 s−1 combinations. A constitutive equation that describes the flow stress of AlCrCuNiFeCo alloy as a function of strain rate and deformation temperature was also determined.  相似文献   

6.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。  相似文献   

7.
The hot deformation characteristics of the Ti−5.7Al−2.1Sn−3.9Zr−2Mo−0.1Si (Ti-6242S) alloy with an acicular starting microstructure were analyzed using processing map. The uniaxial hot compression tests were performed at temperatures ranging from 850 to 1000 °C and at strain rates of 0.001−1 s−1. The developed processing map was used to determine the safe and unsafe deformation conditions of the alloy in association with the microstructural evolution by SEM and OM. It was recognized that the flow stress revealed differences in flow softening behavior by deformation at 1000 °C compared to the lower deformation temperatures, which was attributed to microstructural changes. The processing map developed for typical strain of 0.7 in two-phase field exhibited high efficiency value of power dissipation of about 55% at 950 °C and 0.001 s−1, basically due to extensive globularization. An increase in strain rate and a decrease in temperature resulted in a decrease in globularization of α lamellae, while α lamellar kinking increased. Eventually, the instability domain of flow behavior was identified in the temperature range of 850−900 °C and at the strain rate higher than 0.01 s−1 reflecting the flow localization and adiabatic shear banding. By considering the power efficiency domains and the microstructural observations, the deformation in the temperature range of 950−1000 °C and strain rate range of 0.001−0.01 s−1 was desirable leading to high efficiencies. It was realized that (950 °C, 0.001 s−1) was the optimum deformation condition for the alloy.  相似文献   

8.
The high temperature deformation behaviors of Ti-45Al-2Nb-1.5V-1Mo-Y alloy were investigated in the temperature range 1100–1250 °C and the strain rate range 0.001–1.0 s?1. The true stress-strain curves exhibit typical work hardening and flow softening features; The peak stress of current alloy decreases with increasing temperature and decreasing strain rate, which can be represented by a hyperbolic sine equation using the Zener-Hollomon parameter. Thanks to the additions of element Mo and V, and the resulting B2 phase, this alloy possesses a low activation energy value of 370 kJ/mol, as well as a wide processing window of temperature above 1150 °C and strain rate under 0.1 s?1. The deformed microstructure consists of dominated DRX areas plus several remnant lamellar colonies; the inhomogeneous deformation microstructure is ascribed to the anisotropic plastic flow of lamellar colonies. By TEM observation and EBSD analysis further, the deformation mechanism of current alloy is concluded as dislocation slip and mechanical twins.  相似文献   

9.
The hot deformation behavior of a novel imitation-gold copper alloy was investigated with Gleeble–1500 thermo-mechanical simulator in the temperature range of 650–770 °C and strain rate range of 0.001–1.0 s?1. The hot deformation constitutive equation was established and the thermal activation energy was obtained to be 249.60 kJ/mol. The processing map at a strain of 1.2 was developed. And there are two optimal regions in processing map, namely 650–680 °C, 0.001–0.01 s?1 and 740–770 °C, 0.01–0.1 s?1. Optical microscopy was employed to investigate the microstructure evolution of the alloy in the process of deformation. Recrystallized grains and twin crystals were found in microstructures of the hot deformed alloy.  相似文献   

10.
Hot deformation behavior of the 3003 Al alloy was investigated by conducting hot compression tests at various temperatures (300?C500 °C) and strain rates (0.0l?C10.0 s?1). A constitutive equation was established to describe the flow behavior. The apparent activation energy of the 3003 Al alloy was determined to be 174.62 kJ·mol?1, which is higher than that for self-diffusion in pure Al (165 kJ·mol?1). Processing maps at a strain of 0.6 for hot working were developed on a dynamic materials model. The maps exhibit a flow instability domain at about 300?C380 °C and 1.0?C10.0 s?1. Dynamic recrystallization occurs extensively in the temperature range of 450?C500 °C and at the strain rate of 10.0 s?1. The optimum parameters of hot working for the 3003 Al alloy are confined at 500 °C and 10.0 s?1 with the highest efficiency (37%).  相似文献   

11.
Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001–1.000 s~(-1). The high-temperature deformation behavior of the Ti555211 alloy was characterized by analysis of stress–strain behavior, kinetics and processing maps. A constitutive equation was formulated to describe the flow stress as a function of deformation temperature and strain rate, and the calculated apparent activation energies are found to be 454.50 and 207.52 k J mol~(-1)in the a b-phase and b-phase regions, respectively. A processing map based on the Murty instability criterion was developed at a strain of 0.7. The maps exhibit two domains of peak efficiency from 750 to 950 °C. A *60 % peak efficiency occurs at 800–850 °C/0.001–0.010 s~(-1). The other peak efficiency of *60 % occurs at C950 °C/0.001–0.010 s~(-1), which can be considered to be the optimum condition for high-temperature working of this alloy.However, at strain rates of higher than 1.000 s~(-1)and deformation temperatures of 750 and 950 °C, clear process flow lines and bands of flow localization occur in the hightemperature deformation process, which should be avoided in Ti555211 alloy hot processing. The mechanism in stability domain and instability domain was also discussed.  相似文献   

12.
The deformation behavior of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy with thick lamellar α microstructure is investigated by using the Processing-map (P-map). The results show that the P-map can predict the regime of flow instability and reveal deformation mechanisms well. Through analyzing P-maps and observing the microstructure evolution of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy in forging process, the phenomena of flow instability are found to occur at the temperature and strain rate ranges of (750–880 °C, 0.005–10.0 s?1) and (880–950 °C, 0.17–10.0 s?1), which include macrocracks, adiabatic shear bands and prior β boundary cavities. The preferable temperature and strain rate for hot working of the Ti-alloy are (790–900 °C, 0.001–0.003 s?1) and (900–950 °C, 0.001–0.017 s?1). In these two deformation domains, the globularization of α lamellae occurs, and the combination of the globularization of α lamellae and α + β  β phase transformation happen, respectively. For forging of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy in α + β phase field, the optimum temperature can be selected from the temperature range of 850–950 °C and the optimum stain rate is 0.001 s?1 based on the volume fraction of α phase for obtaining the needed properties of forgings in design of forging processes.  相似文献   

13.
Isothermal compression experiments were conducted to study the hot deformation behaviors of a Sr-modified Al-Si-Mg alloy in the temperature range of 300–420 °C and strain rate range of 0.01–10 s?1. A physically-based model was developed to accurately predict the flow stress. Meanwhile, processing maps were established to optimize hot working parameters. It is found that decreasing the strain rate or increasing the deformation temperature reduces the flow stress. The high activation energy is closely related to the pinning of dislocations from Si-containing dispersoids. Moreover, the deformed grains and the Si-containing dispersoids in the matrix are elongated perpendicular to the compression direction, and incomplete dynamic recrystallization (DRX) is discovered on the elongated boundaries in domain with peak efficiency. The flow instability is mainly attributed to the flow localization, brittle fracture of eutectic Si phase, and formation of adiabatic shear band. The optimum hot working window is 380–420 °C and 0.03–0.28 s?1.  相似文献   

14.
采用Gleeble-1500热模拟实验机在温度为600~800°C、应变速率为0.01~10 s-1的热变形条件下对新型无镍白色Cu-12Mn-15Zn-1.5Al-0.3Ti-0.14B-0.1Ce(质量分数,%)合金进行热压缩模拟实验;根据该合金热变形行为及热加工特征,建立该合金热变形的本构方程和热加工图。该合金热变形过程中变形激活能为203.005 k J/mol。当真应变为0.7时,合金热加工图中存在一个失稳区,此区域的变形温度为600~700°C,应变速率为0.32~10 s-1。在较适宜的热变形条件(800°C、10 s-1)下获得的合金具有良好的表面质量和内部组织。同时,该无镍合金具有与传统镍白铜Cu-15Ni-24Zn-1.5Pb合金相近似的白色色度和肉眼不易察觉的色差(小于1.5)。  相似文献   

15.
The flow behaviors of PM titanium aluminide alloy were studied by isothermal compression simulation test. The apparent activation energy of deformation was calculated to be 313.53 kJ mol?1 and a constitutive equation had been established to describe the flow behavior. Processing map was developed at a strain of 0.7. With an increase of strain, two domains can be found: dynamic recrystallization and superplastic deformation, which are further confirmed by microstructural observations. The dynamic recrystallization occurs extensively at 1000 °C and 10?3 s?1, with a peak efficiency of 50%, and the superplastic deformation occurs at 1100 °C and 10?3 s?1, with a peak efficiency of 60%. At a strain rate higher than 10?1 s?1, the alloy exhibits flow instability.  相似文献   

16.
The hot deformation behavior of as-cast Mg-4Sn-2Ca (TX42) alloy has been studied using compression tests in the temperature range of 300°C to 500°C, and strain rate range of 0.0003 s?1 to 10 s?1. Based on the flow stress data, a processing map has been developed, which exhibited two domains of dynamic recrystallization in the temperature and strain rate ranges: (I) 300°C to 380°C and 0.0003 s?1 to 0.001 s?1, and (II) 400°C to 500°C and 0.004 s?1 to 6 s?1. While hot working may be conducted in either of these domains, the resulting grain sizes are finer in the first domain than in the second. The apparent activation energy values estimated by kinetic analysis of the temperature and strain rate dependence of flow stress in the domains 1 and 2 are 182 kJ/mol and 179 kJ/mol, respectively. Both the values are much higher than that for self-diffusion in pure magnesium, indicating that the thermally stable CaMgSn particles in the matrix cause significant back stress during the hot deformation of this alloy. The alloy exhibits a regime of flow instability at lower temperatures and higher strain rates, which manifested as flow localization.  相似文献   

17.
A nearly full dense Ti-45Al-7Nb-0.4W (at.%) alloy billet with dimension of 120 mm in diameter and 50 mm in height was fabricated by reactive sintering of blended elemental powders. The high temperature deformation behavior was investigated by isothermal compressive tests, performed at temperature in 1000–1200 °C with strain rates from 1 × 10?3 s?1 to 1 × 10?1 s?1. Results indicate that the dependence of flow stress on temperature and strain rate is well fit for a hyperbolic-sine relationship using the Zener–Hollomon parameter. The measured apparent activation energy Q and stress exponent are determined as 420 kJ mol?1 and 3.7, respectively. High oxygen content, high Nb content and fine grain size are main reasons for the high activation energy and high strength of PM TiAl alloy. An appropriate set of deformation processing parameters of 1200 °C and 1 × 10?3 s?1 are recommended for the present TiAl alloy.  相似文献   

18.
The hot deformation behavior of AMS 5708 nickel-based superalloy was investigated by means of hot compression tests and a processing map in the temperature range of 950-1200 °C and a strain rate range of 0.01-1 s?1 was constructed. The true stress-true strain curves showed that the maximum flow stress decreases with the increase of temperature and decrease of strain rate. The developed processing map based on experimental data, showed variations of efficiency of power dissipation relating to temperature and strain rate at constant strain. Interpretation of the processing map showed one stable domain, in which dynamic recrystallization was the dominant microstructural phenomenon, and one instability domain with flow localization. The results of interpretation of flow stress curves and processing map were verified by the microstructure observations. There are two optimum conditions for hot working of this alloy with efficiency peak of 0.36: the first is at 1150 °C for a strain rate of 1 s?1 that produces a fine grained microstructure. The second is at 1200 °C for a strain rate of 0.01 s?1 that produces a coarse grained microstructure.  相似文献   

19.
Iron–aluminium alloys display promising physical and mechanical properties. In this study, the effects of strain, strain rate and temperature on an Fe–8% Al were investigated. Hot torsion tests were performed in the temperature range 900–1100 °C and strain rate range 0.1–10 s?1. In this alloy, two types of dynamic recrystallization may operate during hot deformation: at high temperature and high strain rate, this alloy undergoes discontinuous dynamic recrystallization, whereas at lower temperature and strain rate, continuous dynamic recrystallization occurs.  相似文献   

20.
B. Liu  Y. Liu  Y.P. Li  W. Zhang  A. Chiba 《Intermetallics》2011,19(8):1184-1190
The correlation between hot deformation parameters and the workability of β-stabilized Ti–45Al–7Nb–0.4W–0.15B (at. %) alloy was studied in the temperature range 1000–1200 °C and the strain rate range 0.001–1 s?1. Deformation mechanisms were characterized by detailed analyses of the deformation behavior and microstructural observations. The results indicate that the deformation and recrystallization occurred preferentially in the grain boundary β phases because its good high temperature deformability enhances grain boundary sliding and migration, and thus improves the workability. Decomposition of the β phase to α2 and γ phases partly accommodates the stress concentration and is thus beneficial in hot deformation. Appropriate deformation processing parameters were suggested based on the processing map, and were successfully applied in the quasi-isothermal canned forging of industrial-scale billets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号