首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper evaluates GHG emissions and energy balances (i.e. net energy value (NEV), net renewable energy value (NREV) and net energy ratio (NER)) of jatropha biodiesel as an alternative fuel in Tanzania by using life cycle assessment (LCA) approach. The functional unit (FU) was defined as 1 tonne (t) of combusted jatropha biodiesel. The findings of the study prove wrong the notion that biofuels are carbon neutral, thus can mitigate climate change. A net GHG equivalent emission of about 848 kg t−1 was observed. The processes which account significantly to GHG emissions are the end use of biodiesel (about 82%) followed by farming of jatropha for about 13%. Sensitivity analysis indicates that replacing diesel with biodiesel in irrigation of jatropha farms decreases the net GHG emissions by 7.7% while avoiding irrigation may reduce net GHG emissions by 12%. About 22.0 GJ of energy is consumed to produce 1 t of biodiesel. Biodiesel conversion found to be a major energy consuming process (about 64.7%) followed by jatropha farming for about 30.4% of total energy. The NEV is 19.2 GJ t−1, indicating significant energy gain of jatropha biodiesel. The NREV is 23.1 GJ t−1 while NER is 2.3; the two values indicate that large amount of fossil energy is used to produce biodiesel. The results of the study are meant to inform stakeholders and policy makers in the bioenergy sector.  相似文献   

3.
Malaysia's transportation sector accounts for 41% of the country's total energy use. The country is expected to become a net oil importer by the year 2011. To encourage renewable energy development and relieve the country's emerging oil dependence, in 2006 the government mandated blending 5% palm-oil biodiesel in petroleum diesel. Malaysia produced 16 million tonnes of palm oil in 2007, mainly for food use. This paper addresses maximizing bioenergy use from oil-palm to support Malaysia's energy initiative while minimizing greenhouse-gas emissions from land-use change. When converting primary and secondary forests to oil-palm plantations between 270–530 and 120–190 g CO2-equivalent per MJ of biodiesel produced, respectively, is released. However, converting degraded lands results in the capture of between 23 and 85 g CO2-equivalent per MJ of biodiesel produced. Using various combinations of land types, Malaysia could meet the 5% biodiesel target with a net GHG savings of about 1.03 million tonnes (4.9% of the transportation sector's diesel emissions) when accounting for the emissions savings from the diesel fuel displaced. These findings are used to recommend policies for mitigating GHG emissions impacts from the growth of palm oil use in the transportation sector.  相似文献   

4.
As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion.  相似文献   

5.
《Biomass & bioenergy》2006,30(6):584-591
This study investigates the resource availability, energetic efficiency, and economic feasibility of converting edible and inedible beef tallow into biodiesel, a substitute diesel fuel.A resource assessment of edible and inedible beef tallow generation in the United States was performed for the period of 1997–2001. At that time, an average of more than 1.8 Mt (4 billion pounds) of edible and inedible tallow were generated each year in the 11 largest commercial cattle slaughtering states, which would equate to more than 2.08 GL (551 million gallons) of biodiesel (∼1% of the total US distillate consumption).Tallow is a by-product of our meat production and processing system, which complicates its energy and economic analysis. Although tallow is available in significant quantities at relatively low cost, it is not intentionally produced as a feedstock for biodiesel. Because of this uncertainty, energetic (energy ratio) and economic (production cost per gallon) feasibilities were estimated for three different system boundaries: (1) conversion of tallow by a continuous-flow transesterification process only with co-product (glycerin) credit, (2) rendering plant operations plus tallow transesterification, and (3) growth and maintenance of the beef animal from conception through rendering and transesterification. Energy ratios varied from 17.29 to 0.81 within the three system boundaries based on various assignments of the co-product energy credit for glycerin.Cost-sensitivity analyses were performed to determine the effect of feedstock cost and by-product (glycerin) credit on biodiesel cost. Feedstock cost had the greatest impact, while by-product credit effect was minimal. Cost of production ranged from $0.22 to $0.63 L−1 ($0.82–$2.38 gallon−1) produced.  相似文献   

6.
This research examines in detail the technology and economics of substituting biodiesel for diesel #2. This endeavor examines three areas. First, the benefits of biodiesel are examined, and the technical problems of large-scale implementation. Second, the biodiesel production possibilities are examined for soybean oil, corn oil, tallow, and yellow grease, which are the largest sources of feedstocks for the United States. Examining in detail the production possibilities allows to identity the extent of technological change, production costs, byproducts, and greenhouse gas (GHG) emissions. Finally, a U.S. agricultural model, FASOMGHG was used to predict market penetration of biodiesel, given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and carbon dioxide equivalent prices.FASOMGHG has several interesting results. First, diesel fuel prices have an expansionary impact on the biodiesel industry. The higher the diesel fuel prices, the more biodiesel is produced. However, given the most favorable circumstances, the maximum biodiesel market penetration is 9% in 2030 with a wholesale diesel price of $4 per gallon. Second, the two dominant sources of biodiesel are from corn and soybeans. Sources like tallow and yellow grease are more limited, because they are byproducts of other industries. Third, GHG prices have an expansionary impact on the biodiesel prices, because biodiesel is quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on biodiesel production, and increase market penetration at least an additional 3%.  相似文献   

7.
It has been recognized that oils derived from microorganism and wastewater sludge are comparable replacements of traditional biodiesel production feedstock, which is energy intensive and costly. Energy balance and greenhouse gas (GHG) emissions are essential factors to assess the feasibility of the production. This study evaluated the energy balance and GHG emissions of biodiesel production from microbial and wastewater sludge oil. The results show that energy balance and GHG emissions of biodiesel produced from microbial oil are significantly impacted by the cultivation methods and carbon source. For phototrophic microorganism (microalgae), open pond system gives 3.6 GJ higher energy gain than photo bioreactor system in per tonne biodiesel produced. For heterotrophic microorganisms, the energy balance depends on the type of carbon source. Three carbon sources including starch, cellulose, and starch industry wastewater (SIW) used in this study showed that utilization of SIW as carbon source provided the most favorable energy balance. When oil extracted from municipal sludge is used for biodiesel production, the energy gain is up to 29.7 GJ per tonne biodiesel produced, which is higher than the energy gain per tonne of biodiesel produced from SIW cultivated microbes. GHG emissions study shows that biodiesel production from microbes or sludge oil is a net carbon dioxide capture process except when starch is used as raw material for microbial oil production, and the highest capture is around 40 tonnes carbon dioxide per tonne of biodiesel produced.  相似文献   

8.
Biofuel (e.g. biodiesel) has attracted increasing attention worldwide as blending component or direct replacement for fossil fuel in fuel energized engines. The substitution of petroleum-based diesel with biodiesel has already attained commercial value in many of the developed countries around the world. However, the use of biodiesel has not expanded in developing countries mostly due to the high production cost which is associated with the expensive high-quality virgin oil feedstocks. This research focuses on producing of biodiesel from low cost feedstocks such as used cooking oil (UCO) and animal fat (AF) via alkaline catalyzed transesterification process investigating the effects of process parameters, for example (i) molar ratio of feedstock to methanol (ii) catalyst concentration (iii) reaction temperature and (iv) reaction period on the biodiesel yield. The biodiesel was successfully produced via transesterification process from low cost feedstocks. It was also observed that the process parameters directly influenced the biodiesel yield. The optimum parameters for maximum biodiesel yields were found to be methanol/oil molar ratio of 6:1, catalyst concentration of 1.25 wt% of oil, reaction temperature of 65 °C, reaction period of 2 h and stirring speed of 150 rpm. The maximum biodiesel yields at the optimum conditions were 87.4%, 89% and 88.3% for beef fat, chicken fat and UCO, respectively. The results demonstrate high potential of producing economically viable biodiesel from low cost feedstocks with proper optimization of the process parameters.  相似文献   

9.
In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SO2) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NOx emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification.  相似文献   

10.
Costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. The analysis includes electricity and natural gas consumption, covering 75% of building energy consumption in Pittsburgh and 85% in Austin. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual GHG reductions of 1 ton CO2 eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors and end uses targeted for intervention vary depending on policy objectives and constraints. Optimal efficiency investment strategies for some end uses vary significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Results are used to provide recommendations for efficiency program administrators.  相似文献   

11.
The increasing energy demands along with the expected depletion of fossil fuels have promoted to search for alternative fuels that can be obtained from renewable energy resources. Biodiesel as a renewable energy resource has drawn the attention of many researchers and scientists because its immense potential to be part of a sustainable energy mix in near future.This report attempts to compile the findings on current global and Malaysian energy scenario, potential of biodiesel as a renewable energy source, biodiesel policies and standards, practicability of Jatropha curcas as a biodiesel source in Malaysia as well as impact of biodiesel from Jatropha curcas. Final part of this report also describes the development of biodiesel market in Malaysia.The paper found that Jatropha curcas is one of the cheapest biodiesel feedstock and it possesses the amicable fuel properties with higher oil contents compared to others. Being non edible oil seed feedstocks it will not affect food price and spur the food versus fuel dispute. Jatropha can be substituted significantly for oil imports. Jatropha biodiesel has potential to reduce GHG emission than diesel fuel and it can be used in diesel engine with similar performance of diesel fuel. Jatropha curcas has an immense contribution to develop rural livelihoods too. Finally biodiesel production from Jatropha is eco-friendly and offers many social and economical benefits for Malaysia and can play an increasingly significant role to fulfill the energy demand in Malaysia.  相似文献   

12.
Microalgae have been proposed as possible alternative feedstocks for the production of biodiesel because of their high photosynthetic efficiency. The high energy input required for microalgal culture and oil extraction may negate this advantage, however. There is a need to determine whether microalgal biodiesel can deliver more energy than is required to produce it. In this work, net energy analysis was done on systems to produce biodiesel and biogas from two microalgae: Haematococcus pluvialis and Nannochloropsis. Even with very optimistic assumptions regarding the performance of processing units, the results show a large energy deficit for both systems, due mainly to the energy required to culture and dry the microalgae or to disrupt the cell. Some energy savings may be realized from eliminating the fertilizer by the use of wastewater or, in the case of H. pluvialis, recycling some of the algal biomass to eliminate the need for a photobioreactor, but these are insufficient to completely eliminate the deficit. Recommendations are made to develop wet extraction and transesterification technology to make microalgal biodiesel systems viable from an energy standpoint.  相似文献   

13.
Biofuels could reduce reliance on fossil oil, while helping to reduce greenhouse gas emissions and promoting rural development. This study assessed the viability of using local biodiesel production from sunflower in Tuscany (Italy) to meet inland demand for diesel fuel in compliance with the European Directives. A crop growth model, GIS and geostatistics were used to identify suitable areas for biodiesel production, considering potential sunflower yields alongside essential sustainability criteria: energy efficiency and greenhouse gas (GHG) savings throughout the supply chain. Simulation results indicate that biodiesel potential, estimated at 95,000 t/year, corresponds to 104,400 tCO2 eq/year of GHG saved and to 26,500 TOE/year of fossil energy saved. Two scenarios of biodiesel requirement, derived from EU targets, were evaluated. The results of the evaluation indicated that the 2010 target of replacing 5.75% of transportation diesel fuel can be met, while the 2020 target (reaching a 10% of replacement) cannot be met, since local biodiesel production could replace only 4.78% of diesel fuel requirement. A third scenario considered replacing diesel fuel currently used in the agricultural sector. Results showed that the fuel requirement of this sector cannot be fulfilled since biodiesel could cover only approximately 36% of the expected demand.  相似文献   

14.
Biodiesel derived from palm oil has been recognized as a high-productivity oil crop among the first generation of biofuels. This study evaluated and discussed the net energy balance for biodiesel in Indonesia by calculating the net energy ratio (NER) and net energy production (NEP) form the total energy input and output. The results of the calculation of energy input for the default scenario demonstrated that the primary energy inputs in the biodiesel production lifecycle were the methanol feedstock, energy input during the biodiesel production process, and urea production. These three items amounted to 85% of the total energy input. Next, we considered and evaluated ways to potentially improve the energy balance by utilizing by-products and biogas from wastewater treatment in the palm oil mill. This result emphasized the importance of utilizing the biomass residue and by-products. Finally, we discussed the need to be aware of energy balance issues between countries when biofuels are transported internationally.  相似文献   

15.
The paper assesses the life cycle of biodiesel from used cooking oil (UCO). Such life cycle involves 4 stages: 1) collection, 2) pre-treatment, 3) delivery and 4) transesterification of UCO. Generally, UCO is collected from restaurants, food industries and recycling centres by authorised companies. Then, UCO is pre-treated to remove solid particles and water to increase its quality. After that, it is charged in cistern trucks and delivered to the biodiesel facility to be then transesterified with methanol to biodiesel.  相似文献   

16.
Duck tallow was employed as a feedstock for the production of biodiesel by transesterification with methanol. The content of fatty acid methyl ester (FAME) was evaluated on various alkali catalysts during transesterification. The composition and chemical properties of the FAME were investigated in the raw duck tallow and the biodiesel products. The major constituent in the biodiesel product was oleic acid. The FAME content was 97% on KOH catalyst in the reaction. It was acceptable for the limit of European biodiesel qualities for BD100. Acid value, density, and kinematic viscosity of the biodiesel products also came up to the biodiesel qualities.  相似文献   

17.
In Europe, the highly developed livestock industry places a high burden on resource use and environmental quality. This paper examines pig meat production in North-West Europe as a base case and runs different scenarios to investigate how improvements in terms of energy and greenhouse gas (GHG) savings can be feasibly achieved. As shown in the results of the analysis, pig farming in the EU has a high potential to reduce fossil energy use and GHG emissions by taking improvement measures in three aspects: (i) feed use; (ii) manure management; and (iii) manure utilization. In particular, a combination of improvements in all mentioned aspects offers the highest savings potential of up to 61% fossil energy and 49% GHG emissions. In weighing these three aspects, manure utilization for energy production is found to be the most important factor in reducing fossil energy use and GHG emissions. However, when GHG implications of land use change and land opportunity cost associated with the production of feed crops (e.g. soy meal, cereals) are considered, reducing feed use becomes the main factor in improving GHG performance of EU pork.  相似文献   

18.
Due to issues relating to the sustainability of biofuel production, second generation biofuel has attracted much attention. As a promising feedstock of second generation biodiesel, Jatropha curcas L. (JCL) is being massively planted on marginal land in China, but its viability as a biofuel source has not been systematically assessed. This paper performed a lifecycle assessment of the economic, environmental and energy (3E) performance of the JCL biodiesel, assuming JCL oil is either used for direct blending with diesel or further processed into JCL methyl ester (JME). The results show that, at the current technical levels, the production of JCL biodiesel is financially infeasible, but has positive environmental and energy performance. Despite the additional cost incurred in the transesterification process, the net present value of JME is slightly higher than that of JCL oil when a part of the cost is allocated to the co-product, i.e., glycerin. As compared with that of diesel, the production and consumption of per liter JCL oil and JME can reduce 7.34 kg and 8.04 kg CO2 equivalent, respectively. The energy balances of both JCL oil and JME are 1.57 and 1.47, respectively, in terms of the ratio of the heat value of biodiesel and that of energy input. The main factors affecting the 3E performance of JCL biodiesel are seed yield, co-product output, and farm energy input.  相似文献   

19.
End-use energy efficiency is a cost-effective and rapidly deployable strategy for significantly reducing greenhouse gas (GHG) emissions and energy costs. Energy savings certificates (ESCs)—instruments assigning the property rights to energy savings or attributes of those savings—are becoming an effective tool for meeting energy savings and GHG targets. The efficacy of ESCs will depend on the market’s ability to (1) verify the amount of savings that they certify along with the uncertainty of those savings (i.e., quantify their value), (2) clearly assign ownership rights to that value (i.e., state exactly who owns what) and (3) efficiently buy and sell those rights between interested parties (i.e., conduct simple transactions). The measurement and verification (M&V) system governing ESCs will critically impact whether these three criteria are satisfied. An M&V system for ESCs requires the fundamental elements of an M&V system for any regulated energy-efficiency program, but must also address more explicitly the above-mentioned criteria. In this paper, the authors discuss the International Performance Measurement and Verification Protocol (IPMVP) and specific elements of an M&V system that address components of an ESC system.  相似文献   

20.
Tallow is a raw material for biodiesel production that, due to their highly centralized generation in slaughter/processing facilities and historically low prices, may have energy, environmental, and economic advantages that could be exploited. However beef tallow biodiesel have unfavorable properties due the presence of high concentration of saturated fatty esters. One way to overcome these inconveniences is using blending procedures. In this way, blends of beef tallow biodiesel with soybean biodiesel and with conventional mineral diesel fuel were prepared and the quality of the mixtures was monitored with the purpose to study ideal proportions of the fuels. By measurement of the viscosity, density, cold filter plugging point, and flash point, it was demonstrated that tallow biodiesel can be blended with both mineral diesel and soybean biodiesel to improve the characteristics of the blend fuels, over that of the tallow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号