首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffusion mechanisms of moisture within silica gel particles are investigated. It is found that for microporous silica gel surface diffusion is the dominant mechanism of moisture transport, while for macroporous silica gel both Knudsen and surface diffusions are important. A model is proposed for simultaneous heat and mass transfer in a thin packed bed of desiccant particles, which accounts for diffusion of moisture into the particles by both Knudsen and surface diffusions. Using finite difference methods to solve the resulting partial differential equations, predictions are made for the response of thin beds of silica gel particles to a step change in air inlet conditions, and compared to a pseudo-gas-side controlled model commonly used for the design of desiccant dehumidifiers for solar desiccant cooling applications.  相似文献   

2.
The present article reports on the feasibility of using encapsulated phase change materials (EPCMs) in the dehumidifying bed of a desiccant cooling system. The mathematical model used to simulate the coupled non-equilibrium heat and moisture transfer processes in the porous composite structure containing the EPCM and desiccant particles is presented. Numerical investigations of heat and mass transfer in a desiccant dehumidifying bed composed of silica gel and EPCM particles have been carried out for different values of process parameters. Careful choices of EPCM volume fraction and thermo physical characteristics have been found to increase the overall effectiveness of the desiccant dehumidifier with negligible loss in the dehumidification efficiency. The air stream exits the desiccant/EPCM bed at relatively lower temperature and slightly higher moisture content than from purely desiccant bed. Desiccant cooling systems with less sensible heating and higher cooling capacity can be obtained by employing EPCM in the dehumidifier.  相似文献   

3.
Pradip Majumdar   《Solar Energy》1998,62(1):1-10
A composite desiccant dehumidifier made of mixed inert and desiccant materials is investigated. A heat and mass transfer model that incorporates the composite nature of the structure is discussed. The model includes both gas-side and solid-side resistances for heat and mass transport. The solid-side resistance for the mass transport includes gas-phase diffusion and surface diffusion. The effectiveness for moisture removal and heat transfer during adsorption and desorption processes in such a dehumidifier during single blow operation is investigated. Results are presented for composite structures made of silica gel and inert materials of different compositions and thermophysical properties.  相似文献   

4.
In this work, the effect of design and operating parameters on the performance of a multilayer desiccant packed bed was theoretically and experimentally studied. In the experimental work, a silica gel packed bed of eight layers has been studied. The transient value of the mass of adsorbed water and desorbed water was measured for different values of the bed length. The theoretical model shows the dependence of the dimensionless value of water content in the bed on the dimensionless time. Also the model shows that the dimensionless temperature depends on the bed characteristics and bed water content. The effect of inlet air humidity and velocity on the adsorption process for each bed layer was studied at different inlet velocities and at different air humidities. The effect of inlet temperature on desorption process for each packed bed layer was also studied at different inlet temperatures. The theoretical model also introduces an equation which can be used to predict the optimum bed length. Also, the optimum length of the bed can be recommended from the experimental results according to the operation time. Good agreement between experimental and theoretical results was found.  相似文献   

5.
Traditional dehumidifiers and regenerators of liquid desiccant systems often use packed columns supporting adiabatic heat and mass transfer between air and liquid desiccant. As new-style equipment, internally-cooled dehumidifiers can improve dehumidification performance due to restraining temperature increase of the desiccant. Similar to internally-cooled dehumidifiers, an idea of internally heating is imitated to put forward internally-heated regenerators. The uniform mathematical model for an internally cooled dehumidifier and internally heated regenerator was presented and validated by comparison of computation results with experimental data in this study. The case study focused on the parameters distribution comparisons of the internally cooled/heated dehumidifier/regenerator with adiabatic ones and demonstrated coupled heat and mass transfer behavior. The results show that the internally-heated regenerator can produce higher regeneration efficiency than the adiabatic one to produce better energy efficiency and eliminate the dehumidification possibility which would happen in adiabatic regenerators. The internally-cooled dehumidifier can also provide better dehumidification performance comparing with the adiabatic one; however its benefit would be not as good as the internally-heated regenerator. In addition, effect of the width of the air channel on internally cooled/heated dehumidifier/regenerator was discussed and the results can help the optimal design of this kind of dehumidifiers and regenerators.  相似文献   

6.
在国内外研究的基础上,结合环-核结构的流动模型建立了循环流化床锅炉的传热数学模型。利用该模型对循环流化床锅炉的对流、辐射传热特性进行了仿真研究,并对结果进行分析。仿真结果表明,循环流化床锅炉的对流传热系数与截面平均颗粒体积份额有密切关系,而辐射传热系数与环形区内温度密切相关;循环流化床锅炉辐射传热占总传热的份额随炉膛高度的增加而增大.  相似文献   

7.
This paper is an attempt to explain the role of erosion during the process of coal combustion in a circulating fluidized bed. Different kinds of carbon deposits found in Poland, both bituminous as well as lignite with the particle of 10 mm in diameter were the subject of the research. According to many publications it is well known that erosion plays a significant role in coal combustion, by changing its mechanism as well as generating an additional mass loss of the mother particle. The purpose of this research was to determine the influence of an inert material on an erosive mass loss of a single coal particle burning in a two-phase flow. The determination of the influence of a coal type, the rate of flow of inert material and the temperature inside the furnace on the erosive mass loss of burning coal particle was also taken into consideration. The results obtained indicate that the velocity of the erosive mass loss depends on the chemical composition and petrographic structure of burning coal. The mechanical interaction of inert and burning coal particles leads to the shortening of the period of overall mass loss of the coal particle by even two times. The increase in the rate of flow of the inert material intensifies the generation of mass loss by up to 100%. The drop in temperature which slows down the combustion process, decreases the mass loss of the coal particle as the result of mechanical interaction of the inert material. As was observed, the process of percolation plays a significant role by weakening the surface of the burning coal.  相似文献   

8.
A liquid desiccant system (using CaCl2) is presented for air dehumidification using solar energy or any other low grade energy to power the system. The system utilizes two packed beds of counterflow between an air stream and a solution of liquid desiccant for the processes of air dehumidification and solution regeneration. To simplify the prediction of the performance of the system an effectiveness of heat transfer and an effectiveness of mass transfer in the packed beds are defined. A finite difference model is developed to model the heat and mass transfer in packed beds during the air dehumidification mode and the solution regeneration mode. This finite difference model is used to calculate the effectiveness of heat and mass transfer in the packed beds at various bed heights, various air and solution flow rates, various inlet temperatures of air and solution to the bed, and various concentrations of CaCl2 solution at the bed entrance. Charts of the effectiveness of heat and mass transfer are presented in a convenient form. A designer of a liquid desiccant system may use the charts in predicting the performance of these systems without having to use the finite difference model for this purpose.  相似文献   

9.
This paper presents an experimental investigation on the adsorption and desorption operations in an inclined-fluidized bed using silica gel as the working desiccant. The experimental system involves a circular glass tube containing the particles of silica gel, which is tested at an inclination angle of 45°. The moisture capacity of the bed is measured using a gravimetric technique. Process air at nearly constant ambient parameters (humidity and temperature) and different values of flow rate are used during adsorption. Moisture concentration in the bed is analyzed through visual observation of the color of silica gel particles. Experimental measurements indicate that the regeneration and adsorption rates are highly dependent on the air stream velocity. A satisfactory regeneration rate is confirmed at regeneration temperature as low as 90 °C when inclined-fluidized bed is applied. The transient-state moisture transfer rates during adsorption and desorption are presented. Finally, observation of the movement and color of the particles in the bed show regular circulation and homogenous distribution of moisture concentration.  相似文献   

10.
Regenerative thermal oxidizers (RTO) can be conveniently used to control volatile organic components (VOC) emissions, because of their thermal efficiency and cost effectiveness.In the RTO technology, beds of inert material are used in order to heat the polluted air by cooling burnt gases, through a sequence of cyclic operations which cut the fuel requirements.A computational 1D unsteady model, able to account for both structured and random packed bed regenerators, is developed and applied to realistic plant conditions. Process thermal efficiency and gas pressure drop are calculated as functions of the system geometry and operating parameters.The code can be usefully employed in the analysis and design of RTO systems and in order to choose the more suitable type of regenerator, structured or random packed bed (even considering various particle shapes).Energetic performances of both random and structured regenerators were compared, showing that the first ones exhibit a little higher thermal efficiency but also an elevated pressure drop, at a same value of exchange surface per unit volume of the bed. Random packed bed regenerators resulted less attractive from the energetic point of view and their usage is advisable if their lower cost satisfy economical requirements.  相似文献   

11.
Thermal performances of solid desiccant tray having internal cooling/heating coil for air humidity adsorption and desiccant regeneration are investigated. Three units of desiccant tray each of 48 cm × 48 cm cross‐sectional area and 2.5 cm thickness filled with silica gel are tested in a wind tunnel. For adsorption process, an air stream is flowing through the desiccant trays and the air humidity is captured by the silica gel. Approximately 10–40% of air humidity could be adsorbed more in case of the internal cooling. Besides, the outlet air temperature increases only slightly. In regeneration process, a hot air stream is used to repel the moisture in the silica gel. With the internal heating, the regeneration time is shorter compared with that without internal water heating. In addition, a correlation for calculating the adsorption/regeneration performance of the silica gel trays is developed and the results from the model agree well with the experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In this experimental investigation, a packed bed column suitable for 5‐ton hybrid cooling system has been designed to study the absorption of water vapour from moist air by contact with aqueous solutions of calcium chloride. The packing material used in the study was two elements of the BXPEP structured packing and the height of the each element was 17 cm. This packed bed dehumidifier handles desiccant flow rates from 10 to 32 l/min. This paper presents results from a detailed experimental investigation of the heat and mass transfer between a liquid desiccant (calcium chloride) and air in a gauze‐type structured packing dehumidifier. The effects of different independent variables such as air inlet absolute humidity, desiccant inlet temperature, flow rate and its concentration on the performance of the dehumidifier have been investigated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
In the present work, a theoretical model is reported on the heat and mass transfer in silica gel packed bed during the regeneration process by using hot air combined with high-intensity ultrasound. The model consists of two parts: one is about the sound propagation in porous media; the other is about the fundamental heat and mass transfer process in the silica gel (particle) packed bed. The theoretical model is then validated by experiments in terms of the exit air temperature and humidity (kg/(kg dryair)) under different conditions of regeneration. The experimental error due to the measuring instruments is estimated to be within 0.4% and 3.5%, respectively, for the exit air temperature and humidity. The comparison between theoretical and experimental data shows that the mean relative errors (MREs) of the calculated exit air temperature and humidity compared with the experimental ones are mostly within 2.0%, which manifests the model developed in this study has a favorite agreement with the experiments. The theoretical model will help us conduct a further parametric analysis on the regeneration process in the presence of an ultrasonic field, and have a better understanding of the mechanism of enhancement of silica gel regeneration brought by the high-intensity ultrasound.  相似文献   

14.
In this study, silica gel (SG), calcium chloride (CaCl2) and composite desiccant (SG–CaCl2) applied to a corrugated paper (CP) based desiccant rotary wheel are compared for their abilities to remove moisture from wet air. The experimental data shows that the CP–SG–CaCl2 material could attain equilibrium within a very short period, and its hygroscopic capacity is much higher than that of CP–SG. Also, it exhibits a remarkable increase in moisture removal compared with the silica gel wheel.  相似文献   

15.
Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling the latent load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. For liquid–gas contact, packed towers with low pressure drop provide good heat and mass transfer characteristics for compact designs. This paper presents the results from a study of the performance of a packed tower absorber and regenerator for an aqueous lithium chloride desiccant dehumidification system. The rates of dehumidification and regeneration, as well as the effectiveness of the dehumidification and regeneration processes were assessed under the effects of variables such as air and desiccant flow rates, air temperature and humidity, and desiccant temperature and concentration. A variation of the Öberg and Goswami mathematical model was used to predict the experimental findings giving satisfactory results.  相似文献   

16.
三种太阳能液体除湿空调系统除湿器的比较   总被引:5,自引:0,他引:5  
太阳能液体除湿空调的除温器是系统的重要组成部分。文章通过对三种典型结构的除湿器的传热传质性能、被处理空气与除湿溶液的质量流量比率(MR)和蓄能能力(SC)等方面的比较,得出绝热型除湿器具有比表面积大,被处理的空气流量大等优点,但加湿器内沿程压降较大;水冷型除湿器蓄能能力强,但结构复杂;而交叉流型板式除湿器由于能充分利用回风,是一种可供选择的节能型除湿器。  相似文献   

17.
《Energy》1986,11(10):1005-1021
The performance of a desiccant, integrated, hybrid, vapor-compression cooling system is modeled numerically. The concept of hybrid cooling investigated in this paper utilizes the waste heat rejected from a vapor-compression cycle to activate a desiccant dehumidification cycle. The hybrid system consists of 4 major components: a compressor, an evaporator and 2 desiccant, integrated condensers/dehumidifiers. The equations governing the transport of heat and mass in the desiccant, integrated condenser/dehumidifiers are formulated considering air as the working fluid in the process stream and a refrigerant stream, which is cooled from superheated vapor to subcooled liquid, as the heat source during desorption; a water stream is used to remove the heat generated during adsorption. The governing equations are nondimensionalized and solved for both sorption processes using an explicit finite-difference scheme. The performance of a first generation prototype desiccant, integrated, hybrid, vapor-compression cooling system is then evaluated at ARI conditions.  相似文献   

18.
In this article, an experiment has been carried out with heat pipe vacuum or evacuated tube collector to produce water from atmospheric air. In this experiment, the regeneration and adsorption method has been adopted, that is, water has been produced through the adsorption and regeneration of desiccants. The desiccant is heated through a hot surface to facilitate its regeneration. Limited experiments have been conducted to obtain water through the regeneration of desiccant using a hot surface. For the condensation of water vapor, a novel box has been designed, named the “novel-designed acrylic box.” The water is collected in a measuring flask or beaker to determine its quantity. Silica gel desiccant has been used for the adsorption and regeneration of water vapors. In this experiment, the adsorption process for silica gel was carried out in two different ways. In the first method, 1 kg of silica gel was scattered on the copper tray, that is, inside the system, while in the second method, 1 kg of silica gel was scattered on the paper, that is, outside of the system. In the first case silica gel adsorbed 137 g water vapor, and in the second case, it adsorbed 232 g water vapor. In the first case of adsorption, 70 mL water was produced while in the second case of adsorption, 175 mL water was produced from ambient air. The system's maximum efficiency was found to be 4.9%. Effects of various parameters, such as solar intensity, ambient temperature, wind speed, and so forth, have been studied.  相似文献   

19.
ABSTRACT

In this paper, the flow and heat transfer performances inside small pores of structured packed beds of dimple particles are numerically investigated for the first time and some interesting transport phenomena are obtained. Three-dimensional Navier–Stokes equations and SST k-ω turbulence model are adopted for the simulations. The effect of dimple depth is studied in detail, and the flow and heat transfer performances in the packed beds with dimple particles and smooth particles are also compared with each other. It is found that, with the same inlet velocity, the pressure drop and heat transfer in the packed bed with dimple particles would be lower than those in the packed bed with smooth particles, while the overall heat transfer efficiency of packed bed with dimple particles is higher. Furthermore, for the packed bed of dimple particles, the effect of dimple depth is remarkable. With the same inlet velocity, both the pressure drop and heat transfer rate of the packed bed decrease as dimple depth increases, while the overall heat transfer rate is similar for the packed bed with different dimple depths.  相似文献   

20.
Ahmed M. Hamed 《Renewable Energy》2003,28(13):2099-2111
Theoretical and experimental investigation on the desorption characteristics of a packed porous bed is presented in this study. The granules of burned clay are applied as a desiccant carrier. Calcium chloride is used as the working desiccant. The theoretical model defines the transient gradient of air stream parameters (humidity and temperature) as well as desiccant concentration in the bed. In the experimental study, transient concentration gradient in the bed is evaluated by weight method. The bed is divided into seven separate layers. Air stream at low temperature and nearly constant inlet parameters are used for desorption purposes. Concentration gradient in the bed is found highly dependent on the mass transfer rate. For the specified operating conditions and stated assumptions, experimental measurements shows acceptable agreement with the analytical solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号