首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zirconia supports were prepared by a sol–gel method (S-ZrO2) and by a templating sol–gel method (M-ZrO2). Nickel catalysts supported on zirconia were then prepared by an incipient wetness impregnation method for use in hydrogen production by auto-thermal reforming of ethanol. For comparison, a commercial zirconia (C-ZrO2) was also employed as a support for nickel catalyst. The effect of preparation method of zirconia on the catalytic property and catalytic performance of supported nickel catalysts (Ni/C-ZrO2, Ni/S-ZrO2, and Ni/M-ZrO2) was investigated. The crystalline and physical property of zirconia supports and the catalytic performance of supported nickel catalysts were strongly affected by the preparation method of zirconia. BET surface area and pore volume were decreased in the order of M-ZrO2 > S-ZrO2 > C-ZrO2. Both M-ZrO2 and S-ZrO2 supports showed only tetragonal phase of ZrO2, while C-ZrO2 support exhibited tetragonal and monoclinic phases of ZrO2. Crystalline size of nickel species in the Ni/ZrO2 catalysts decreased with increasing surface area and pore volume of ZrO2 supports. All the Ni/ZrO2 catalysts exhibited 100% conversion of ethanol at 500 °C, while product distributions over the Ni/ZrO2 catalysts were different depending on the preparation method of zirconia. Among the catalysts tested, the Ni/M-ZrO2 catalyst showed the best catalytic performance in hydrogen production by auto-thermal reforming of ethanol. Well developed mesopore, high surface area, and pure tetragonal phase of ZrO2 were responsible for fine nickel dispersion and high catalytic performance of Ni/M-ZrO2. C–C bond cleavage reaction and methane steam reforming reaction were also accelerated over the Ni/M-ZrO2 catalyst.  相似文献   

2.
To improve the stability of Ni catalysts and employ reactive oxygen species in reducible metal oxides, the Ni nanoparticles were confined within mesoporous metal oxides (La2O3, Yb2O3, ZrO2, CeO2) via evaporation-induced self assembly technique utilizing 3D honeycomb-like silica as substrate for partial oxidation of methane (POM). Compared with supported catalysts, the prepared catalysts showed superior catalysts stability especially 3D honeycomb-like ZrO2 and CeO2 supported Ni catalysts (Ni/3HL-ZrO2-SiO2 and Ni/3HL-CeO2-SiO2) due to confinement effect and strong interaction between Ni and metal oxides. CH4 conversion reached 90%–92%. Outstanding catalytic activity was attributed to highly dispersity of active metal. More importantly, abundant hydrogen production was observed over mesoporous CeO2, ZrO2 supported catalysts and the ratio of H2/CO changed from nominal value 2 to 3. DFT theoretical calculations illuminated structural defect sites of reducible support like CeO2, ZrO2 afforded generation of surface hydroxyl group, which can be regenerated by activation of water and reoxidation of CeO2, ZrO2. Hydroxyl group was beneficial to accelerate greatly water gas shift reaction, promoting the production of hydrogen. This may provide a strategy to regulate production composition of POM to expand its downstream process.  相似文献   

3.
Dry reforming of glycerol is an interesting method for syngas production due to its H2/CO ≈ 1 that is suitable for FT synthesis. In this study, the performance of the Ni/MgO.Al2O3 catalysts with different nickel contents was investigated in glycerol dry reforming. The MgO.Al2O3 carrier was prepared by a simple sol-gel method and the nickel-based catalysts were synthesized by the wet impregnation method. The prepared catalysts possessed high BET surface area and pore volume. The TPR analysis showed a strong interaction between Ni and the catalyst support. The results demonstrated that the glycerol conversion decreased by increasing in CO2/glycerol (GRR) molar ratio. All the prepared samples showed high stability in glycerol dry reforming during 25 h of reaction, indicating the high resistance of the catalysts against carbon formation. Also, 10 wt%Ni/MgO.Al2O3 catalysts possessed the highest catalytic performance (52% of glycerol conversion at 750 °C) due to the high dispersion of nickel on the prepared carrier.  相似文献   

4.
In this work we have investigated the hydrogen production from glycerol steam reforming. The effect of the acid–base properties was evaluated using four catalysts based in an alloy Ni–Sn as active phase supported over γ-Al2O3 with different content in MgO, varying between 0 and 30 wt.% The incorporation of MgO results in the formation of MgAl2O4 spinel, which modifies the acid–base properties of the catalyst. Addition of MgO favored the glycerol conversion into gas, and the catalyst loaded with 10 wt.% MgO exhibited better catalytic performance and higher stability. A blank test with quartz was performed indicating that pyrolysis of glycerol takes place in the quartz.  相似文献   

5.
Supported Ni catalysts have been investigated for hydrogen production from steam reforming of glycerol. Ni loaded on Al2O3, La2O3, ZrO2, SiO2 and MgO were prepared by the wet-impregnation method. The catalysts were characterized by nitrogen adsorption–desorption, X-ray diffraction and scanning electron microscopy. The characterization results revealed that large surface area, high dispersion of active phase on support, and small crystalline sizes are attributes of active catalyst in steam reforming of glycerol to hydrogen. Also, higher basicity of catalyst can limit the carbon deposition and enhance the catalyst stability. Consequently, Ni/Al2O3 exhibited the highest H2 selectivity (71.8%) due to small Al2O3 crystallites and large surface area. Response Surface Methodology (RSM) could accurately predict the experimental results with R-square = 0.868 with only 4.5% error. The highest H2 selectivity of 86.0% was achieved at optimum conditions: temperature = 692 °C, feed flow rate = 1 ml/min, and water glycerol molar ratio (WGMR) 9.5:1. Also, the optimization results revealed WGMR imparted the greatest effect on H2 selectivity among the reaction parameters.  相似文献   

6.
Ni catalysts supported on ZrO2 with different crystalline phases and particle sizes were prepared to study the role of zirconia support in ethanol steam reforming for hydrogen production. Catalytic behavior of the catalysts was examined at relatively low temperature of 673 K with different contact times. The decrease in particle size of zirconia results in enhanced metal-support interaction, which accounts for the high activity of the catalyst. Regarding the impact of crystalline phase of zirconia on catalytic performance, tetragonal zirconia yields a higher activity in water gas shift reaction but a lower activity in methane steam reforming than that of monoclinic zirconia. Nevertheless, zirconia plays a secondary role in product distribution, especially at long contact times. Catalytic activity tests performed at elevated temperature demonstrated a high activity and stability of Ni/ZrO2 catalyst for hydrogen production from steam reforming of ethanol.  相似文献   

7.
Hydrogen production by steam reforming of ethanol over mesoporous Ni–Al2O3–ZrO2 xerogel catalysts (denoted as XNiAZ) with different nickel content (X, wt%) was studied. A single-step epoxide-driven sol–gel method was employed for the preparation of the catalysts. The effect of nickel content of XNiAZ catalysts on their physicochemical properties and catalytic activities was investigated. All the XNiAZ catalysts exhibited a well-developed mesoporous structure and they dominantly showed an amorphous NiO–Al2O3–ZrO2 composite phase, leading to high dispersion of NiO. Nickel surface area and reducibility of XNiAZ catalysts showed volcano-shaped trends with respect to nickel content. Nickel surface area of XNiAZ catalysts played a key role in determining the catalytic performance in the steam reforming of ethanol; an optimal nickel content was required for maximum production of hydrogen. Among the catalysts tested, 15NiAZ catalyst with the highest nickel surface area exhibited the best catalytic performance in the steam reforming of ethanol. In addition, 15NiAZ catalyst showed high and stable hydrogen yields under different total feed rate, demonstrating its potential applicability in large-scale hydrogen production.  相似文献   

8.
Nickel nanoclusters embedded in multicomponent mesoporous metal oxides (Ni–MMOs) are obtained at various support compositions by a single-step synthesis of Ni ion incorporated mesoporous metal oxides (NiO–MMOs) followed by selective reduction of the NiO to Ni metal clusters. The resultant Ni–MMOs catalysts displayed enhanced Ni dispersion with well-developed mesopore structures at various support composition, exhibiting superior catalytic properties when compared to a siliceous SBA-16-supported Ni catalyst prepared by a conventional impregnation method. Glycerol steam reforming conducted at 873 K on 1Ni–2Al2O2–2ZrO2 and 1Ni–2SiO2–2ZrO2 catalysts exhibited considerably higher glycerol conversions over the 10 wt%-Ni/SBA-16 catalyst with similar Ni loading amount. This was primarily due to the enhanced Ni dispersion resulting from the direct synthesis process. The multicomponent mesoporous supports also significantly affect product selectivity, favoring higher hydrogen concentration in the product stream. The water–gas shift reaction appears to be positively affected by the 2Al2O2–2ZrO2 and 2SiO2–2ZrO2 multicomponent metal oxide matrices, which facilitated the conversion of the CO produced by the glycerol reforming further to additional hydrogen. Direct single-step synthesis of Ni–MMO catalysts was effective in enhancing the dispersion of Ni nanoclusters, as well as variation of the support components of the mesoporous catalyst systems.  相似文献   

9.
Ni catalysts were prepared by wet impregnation of three different supports: alumina, niobia and 10 wt.% niobia/alumina, prepared by (co)precipitation. The catalysts were evaluated on steam reforming of glycerol at 500 °C, for 30 h. The catalyst supported on Nb2O5/Al2O3 presented the best performance, with higher conversion into gas (80%) during all reaction time and hydrogen yield of 50%. Alumina supported catalyst showed higher deactivation and lower hydrogen yield. All catalysts showed coke formation, but it was formed in larger amount on the catalysts supported on single oxides. A depth study was conducted to evaluate the effect of reaction variables as space velocity, glycerol concentration in feed and temperature on the catalytic performance of the Nb2O5/Al2O3 catalyst. Kinetic study was also performed for this catalyst using two different approaches, obtaining glycerol and steam orders, as well as the apparent activation energy.  相似文献   

10.
Enhanced hydrogen production via catalytic steam reforming of ethanol has a huge potential. In the present investigation, several combinations of mixed metal oxide supported catalysts were evaluated for efficient and economical hydrogen generation from ethanol. The comparison was carried out in terms of ethanol conversion, hydrogen yield and cyclic stability over various catalyst-support systems. Several nickel based supported catalysts namely, Ni/MgO, Ni/Al2O3, Ni/CeO2 and Ni/ZrO2 were studied in this work among which Ni/MgO and Ni/Al2O3 showed satisfactory activity and stability for hydrogen production. Thereafter Ni/hydrotalcite (HTc)-type material was employed to combine features of the above catalysts which showed more than 90% ethanol conversion and yielded 82 mol% of hydrogen at optimized conditions. Finally, a novel combination of Cu promoted Ni-Co/HTc was synthesized and tested for improved hydrogen production. It showed almost complete conversion of ethanol (98.3%) with hydrogen yield of 83% at much lower temperature (673 K). The process conditions were optimized by studying effects of temperature, S/C ratio and GHSV on hydrogen production. Cu-Ni-Co/HTc also remained stable for up to 4 cycles justifying its multi-cycle activity, selectivity and durability. Such novel combination of catalyst-support system assists in improved hydrogen production in a sustainable manner.  相似文献   

11.
Glycerol is the main by-product in the biodiesel process and can be considered as a promising and renewable source for hydrogen generation through the reforming process. In this work, catalysts with 15 wt% Ni supported on 3 wt% M ? Al2O3 (M = MgO, CaO, SrO, and BaO) were prepared and employed in the glycerol dry reforming (GDR) reaction to produce hydrogen and carbon monoxide. The textural characteristics of the fresh and spent catalysts were determined using the ICP, BET, TPR, TPO, and SEM analyses. Based on the obtained results, the catalyst promoted by SrO had the highest catalytic activity. The results indicated that adding various alkaline-earth oxides into the catalyst support decreased the Ni crystalline size from 17.2 nm to 7.4–10.9 nm. Moreover, all promoted catalysts showed better catalytic performance and the promoted sample with 3 wt% SrO possessed higher stability than unpromoted catalyst during 20 h on stream.  相似文献   

12.
Hydrogen production from glycerin by steam reforming over nickel catalysts   总被引:3,自引:0,他引:3  
Increasing biodiesel production has resulted in a glut of glycerin that has led to a precipitous drop in market prices. In this study, the use of glycerin as a biorenewable substrate for hydrogen production, using a steam reforming process, has been evaluated. Production of hydrogen from glycerin is environmentally friendly because it adds value to this byproduct generated from biodiesel plants. The study focuses on nickel-based catalysts with MgO, CeO2, and TiO2 supports. Catalysts were characterized with thermogravimetric analysis and X-ray diffraction techniques. Maximum hydrogen yield was obtained at 650 °C with MgO supported catalysts, which corresponds to 4 mol of H2 out of 7 mol of stoichiometric maximum.  相似文献   

13.
The catalytic performance of nickel catalysts supported on La2O3, α-Al2O3, γ-Al2O3, ZrO2, and YSZ for supercritical water reforming of glycerol was investigated. Experiments were conducted in a tubular reactor made of Inconel-625 with the temperature range of 723–848 K under a pressure of 25 MPa. Carbon formation causing operation failure was observed for α-Al2O3, γ-Al2O3 and ZrO2 at temperatures higher than 748, 798 and 823 K, respectively. Ni/La2O3 exhibited the highest H2 yield where almost complete conversion was obtained at 798 K. Moderate space velocities (WHSV = 6.45 h−1) and glycerol feed concentration (5wt.%) favor high hydrogen selectivity and yield. Methanation is favored at a low WHSV or high glycerol feed concentration, resulting in a lower H2 yield. Increasing Ni loading on the Ni/La2O3 catalyst strongly promoted the reforming, water–gas shift, and methanation reactions, which contributed significantly to the product species distribution.  相似文献   

14.
Dry reforming of methane (DRM) is known to produce synthesis gas through the utilization of greenhouse gases to ensure environmentally benign process and rational use of natural resources. Many catalyst formulations operating at “ideal” conditions were proposed for DRM reaction, including those based on noble (Pt, Rh) and non-noble (Ni, Co) metals supported on various oxides. This review is focused on the recent advances in lanthanoid-containing Ni-based DRM catalysts. We consider the performance of Ni-based catalysts supported on LnOx oxides (La2O3, CeO2, etc.), promotion of the said composites by noble or transition metals, organization of pristine and promoted Ni–LnOx interfaces on the surfaces of various supports, including ordered materials. Analysis of features of the high-performance DRM catalysts is provided. The outlook of the existing challenges and opportunities in the rational design of a new generation of lanthanoid-containing Ni-based catalysts for dry reforming of methane and other hydrocarbons is provided.  相似文献   

15.
This work focuses on a facile NiO/MgO/ZrO2 synthesis protocol for syngas production via partial oxidation and dry reforming of biogas. Herein, performance of the developed catalysts with different amounts of MgO (0–40 %wt. of support) and NiO (10–50 %wt.) on %CH4 conversion, %CO2 conversion, H2/CO ratio, and carbon formation are studied. The results reveal the presence of monoclinic ZrO2 and tetragonal ZrO2 phases with 50%NiO/ZrO2 catalyst synthesized by surface modification technique using carbon derived from urea. Addition of MgO in the catalyst shows ability to stabilize tetragonal ZrO2 phase as well as enhance basic surface of the catalyst. These properties render the adsorption of CO2 molecules on the surface, which subsequently are reduced by carbon, leading to CO production. Appropriated amount of NiO and MgO, which is 30 %wt. NiO and 20 %wt. MgO (relative to ZrO2) can produce syngas having quality (H2/CO molar ratio) of ca. 2.  相似文献   

16.
Steam reforming of toluene (SRT) has been studied initially in eight nickel-based catalysts where nickel (10 wt%) was incorporated in different supports (olivine, Al2O3, MgO, LDH, ZrO2, CeO2 and natural sepiolite) by the incipient wetness impregnation method. Among them, nickel catalyst based on sepiolite exhibited a promising catalytic performance, with a high conversion of toluene (16%), high selectivity to hydrogen (68.4%) and low production of undesired by-products (CO, CH4, ethylene and benzene) at low temperature (500 °C). On the other hand, the incorporation of Ni in the sepiolitic material by precipitation (PP) has been considered as alternative method to the incipient wetness impregnation method (IWI). PP method allowed to prepare a Ni-based catalyst with a very high activity (conversion of toluene ~100%), high selectivity to hydrogen (73%) and lower production of undesirable by-products (5% CO, 2% CH4 and 0% C6H6) at 575 °C. In addition, catalytic deactivation due to coke deposition and nickel sinterization was clearly lower for the catalyst synthesized by PP. Characterization by different physicochemical techniques (XRD, TEM, BET surface area, ICP-OES, TPR and EA) showed that PP method allowed to obtain a sepiolite-based catalyst containing Ni with larger external surface area and smaller, highly dispersed and easily reducible Ni metal particles. The results here discussed show that the Ni incorporation method has a clear influence in the preparation of nickel catalyst supported on sepiolite with improved catalytic performance in the steam reforming of toluene.  相似文献   

17.
Architectonics of the paper-structured catalyst for the application to the biofuel reformer or direct internal reforming SOFC (DIRSOFC) was studied. Inorganic fiber network, “paper”, composed of yttria-stabilized zirconia (YSZ) fiber (Zf), alumina fiber (Af) and inorganic binder (Al2O3 sol (As) or ZrO2 sol (Zs) or CeO2 sol (Cs)) was prepared by a simple paper-making process. Then, the catalytic activities of the Ni and Ni–MgO loaded papers called “paper-structured catalysts (PSCs)” for the steam reforming of biodiesel fuels (BDFs) were evaluated. Ni–MgO loaded PSC using Cs as an inorganic binder, Ni–MgO/ZfAfCs, exhibited excellent performance over Ru/γAl2O3 catalyst beads. Formation of light hydrocarbons, especially C2H4, was eliminated and water–gas shift reaction was more promoted compared to the catalyst beads.  相似文献   

18.
Glycerol reforming under catalytic supercritical water at temperatures in the range of 723–848 K using Co catalyst deposited on various supports including ZrO2, yttria-stabilized zirconia (YSZ), La2O3, γ-Al2O3, and α-Al2O3 was investigated. An increase in operating temperature promoted the continued increase in glycerol conversion; however, carbon formation causing system operation failure was observed for γ-Al2O3 and α-Al2O3 at high operating temperatures (i.e. 748–798 K). Co supported on YSZ provided the most efficient performance for hydrogen production. 10 wt.% Co loading on YSZ support was an optimum amount to enhance the reaction. The increase in glycerol conversion and reduction of the amount of liquid products were observed for lower weight hourly space velocity (WHSV), higher operating temperature or higher cobalt loading. On Co/YSZ catalyst, glycerol conversion of 0.94 and hydrogen yield of 3.72 was obtained with WHSV of 6.45 h−1at 773 K.  相似文献   

19.
A series of mesoporous Ni–Al2O3–ZrO2 xerogel catalysts (denoted as Ni-AZ-X) with different Zr/Al molar ratio (X) were prepared by a single-step epoxide-driven sol–gel method, and they were applied to the hydrogen production by steam reforming of ethanol. The effect of Zr/Al molar ratio of Ni-AZ-X catalysts on their physicochemical properties and catalytic activities was investigated. Textural and chemical properties of Ni-AZ-X catalysts were strongly influenced by Zr/Al molar ratio. Surface area of Ni-AZ-X catalysts decreased with increasing Zr/Al molar ratio due to the lattice contraction of ZrO2 caused by the incorporation of Al3+ into ZrO2. Interaction between nickel oxide species and support (Al2O3–ZrO2) decreased with increasing Zr/Al molar ratio through the formation of NiO–Al2O3–ZrO2 composite structure. Acidity of reduced Ni-AZ-X catalysts decreased with increasing Zr/Al molar ratio due to the loss of acid sites of Al2O3 by the addition of ZrO2. Acidity of Ni-AZ-X catalysts served as a crucial factor determining the catalytic performance in the steam reforming of ethanol; an optimal acidity was required for maximum production of hydrogen. Among the catalysts tested, Ni-AZ-0.2 (Zr/Al = 0.2) catalyst with an intermediate acidity exhibited the best catalytic performance in the steam reforming of ethanol.  相似文献   

20.
Different types of cobalt-based mixed oxide catalysts (20 wt%Co/MgO, 5 wt%Cu-20 wt% Co/MgO, 20 wt%Co/50%MgO–50%Al2O3) were synthesized by the co-precipitation method and applied for hydrogen production from glycerol steam reforming. The catalysts were characterized using X-ray diffraction (XRD), H2-Temperature-programmed reduction (H2-TPR), CO2-Temperature Programmed desorption, CO-Chemisorption, and CHN techniques. The H2-TPR analysis showed the reducibility of cobalt-oxide (5Cu20CM; 5 wt%Cu-20 wt% Co/MgO) was enhanced by the copper, and reduction profiles of cobalt oxide shifted to a lower temperature (<450 °C). Among the catalysts, 5Cu20CM showed a maximum yield of hydrogen (74.6%) with 100% conversion of glycerol to the gaseous phase. The superior catalytic performance of 5Cu20CM for glycerol conversion was attributed to the smaller particle size (7 nm), higher dispersion of cobalt (35.0%), and the higher surface area (56 m2/g) of cobalt metal. Furthermore, Raman spectroscopy of the spent catalysts confirmed that the copper promoted cobalt-magnesium catalyst suppressed the carbon formation, consequently, 5Cu20CM catalyst showed a stable performance up to 30 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号