首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过AZ31镁合金在人工血浆中的浸泡实验和动/静态降解析氢实验,研究了AZ31镁合金的动态降解行为。人工血浆溶液的循环更新对镁合金的降解具有一定的影响,溶液的更新可以保持其pH值的稳定,促进镁合金的降解;在动/静态降解析氢实验中,对镁合金表面降解形貌的扫描电镜(SEM)观测表明,镁合金在动态实验中除了点腐蚀行为外,还存在冲刷腐蚀。由析氢速率对比结果显示,镁合金在人工血浆中动态实验比静态实验的降解速率更快。  相似文献   

2.
为提高AZ31B镁合金表面的耐腐蚀性能,用火焰喷涂方法在镁合金表面制备Al-Mg_2Si复合涂层。采用XRD、SEM和EDS分析涂层的物相组成、微观组织及元素分布;通过电化学试验测试样品在3.5%NaCl溶液中的腐蚀电位、腐蚀电流密度;通过3.5%NaCl溶液浸泡试验测试样品的腐蚀速率;并测试涂层的显微硬度。结果表明:涂层中的主要物相有Mg_2Si、Al,组织比较致密,元素分布均匀。Tafel极化曲线测试表明,Al-Mg_2Si涂层样品与AZ31B镁合金样品相比腐蚀电位从-1.489 V正移到-1.366 V,腐蚀电流密度从2.817×10~(-3) A/cm~2降低到1.198×10~(-3) A/cm~2。浸泡试验结果表明,喷涂Al-Mg_2Si的镁合金的腐蚀速率明显低于没有喷涂的镁合金。显微硬度测试表明,涂层的显微硬度集中分布在259~308 HV0.05之间,镁合金为50~60 HV0.05。因此在AZ31B镁合金表面火焰喷涂Al-Mg_2Si涂层可以提高其耐腐蚀性能,表面硬度显著提高。  相似文献   

3.
王丹  周小平 《表面技术》2016,45(9):51-55
目的提高AZ31B镁合金的耐蚀性。方法采用氧乙炔在AZ31B镁合金表面喷熔Al涂层,对喷熔的Al涂层进行扫描电镜(SEM)分析,采用能谱仪(EDS)对涂层进行面扫描检测涂层元素的分布情况。利用电化学分析法、浸泡试验检测喷熔涂层的耐蚀性,用维氏硬度计测试喷熔涂层的硬度。结果喷熔的Al涂层与AZ31B镁合金基体结合良好,呈现冶金结合。喷涂过程中,喷熔的Al涂层呈等轴晶生长。通过面扫描结果可知,喷熔涂层中发现Mg元素,说明基体中的Mg元素发生了扩散。通过电化学测试可知,喷熔Al涂层的自腐蚀电压为-1.45 V,比AZ31B镁合金的自腐蚀电压(-1.5 V)降低了0.05 V;喷熔Al涂层的自腐蚀电流密度为1.58×10~(-4) A/cm~2,约为AZ31B镁合金自腐蚀电流密度(8.66×10-4 A/cm2)的1/5。由浸泡实验可知,喷熔Al涂层的平均腐蚀速率约为AZ31B镁合金的1/5倍。喷熔Al涂层的显微硬度是AZ31B镁合金基体硬度的2.9倍。结论喷熔Al涂层的组织较好,性能比镁合金基体有所提高。  相似文献   

4.
采用化学沉积法在AZ31镁合金基体表面制备了钙磷涂层。利用X射线衍射仪和扫描电镜分析了涂层的相组成和形貌。通过电化学噪声技术原位研究了涂层的化学沉积过程及其在生理盐水中腐蚀行为。结果表明,经过3h的化学沉积可在AZ31基体上生成致密的二水合磷酸氢钙(DCPD)晶体涂层。涂层试样的腐蚀速率明显小于AZ31基体的腐蚀速率。AZ31基体在生理盐水中在较短的时间内会发生明显的局部腐蚀,腐蚀形态是以分散分布的多个腐蚀点的形式出现。涂层试样在生理盐水中经较长时间浸泡会发生局部腐蚀,腐蚀沿着打磨痕迹的方向发展,同时先前的局部腐蚀区域则停止发展。  相似文献   

5.
在AZ31镁合金表面制备锌钙磷酸盐(Zn-Ca-P)涂层和铈掺杂锌钙磷酸盐(Zn-Ca-Ce-P)涂层。采用X射线能谱(EDS)、光电子能谱(XPS)、X射线衍射(XRD)、电子探针(EPMA)和扫描电镜(SEM)以及析氢实验和电化学测试技术研究涂层的化学成分、形貌和腐蚀性能。结果表明:两种膜层主要是磷酸盐(Zn_3(PO_4)_2·4H_2O)、Mg_3(PO_4)_2、Ca_3(PO_4)_2晶体簇和少量的MgF_2和CaF_2非晶颗粒组成。CePO_4的形成使Zn-Ca-Ce-P膜层更加致密,并具有更好的耐蚀性。两种涂层只能在浸泡前期为AZ31镁基体提供保护作用,随着浸泡时间延长,涂层与基体界面之间电偶腐蚀的发生加快了腐蚀速率。Ce的添加促进了Ca的均匀分布和磷化膜的形成。因此,Zn-Ca-Ce-P涂层具有作为镁合金底涂层的应用前景。  相似文献   

6.
镁合金表面等离子喷涂Al2O3-TiO2陶瓷涂层的耐腐蚀性研究   总被引:1,自引:1,他引:0  
李兴成  陈菊芳 《表面技术》2012,41(2):20-22,34
采用等离子喷涂技术在AZ31镁合金表面制备Al2O3-13%TiO2陶瓷复合涂层,对涂层的微观组织进行了观察分析,测试了涂层的表面硬度.通过极化曲线和浸泡腐蚀试验,对比研究了镁合金基材及喷涂陶瓷涂层的试样在5% NaCl溶液中的耐腐蚀性能.结果表明:涂层镁合金试样的硬度和耐腐蚀性优于基体镁合金,但当腐蚀液透过涂层孔隙时...  相似文献   

7.
镁合金表面磷酸盐转化膜研究   总被引:1,自引:0,他引:1  
研究了以Zn(H2PO4)2为主盐的溶液在AZ31和AZ61镁合金表面进行磷酸盐转化膜处理的工艺.通过正交试验确定了溶液成分和工艺参数,采用光学显微镜、扫描电镜、能谱仪、X射线衍射仪等分析了镁合金磷酸盐转化膜的结构和组成,利用中性盐雾试验等研究了膜的耐蚀性.讨论了镁合金表面磷酸盐转化反应过程以及转化膜可能的耐蚀原理.结果表明,镁合金磷酸盐转化膜结晶细致,微观表面粗糙,膜的主要成分是[Zn3(PO4)2·4H2O]·[Zn2Mg(PO4)2·4H2O],转化膜与涂层的结合力可以达到1级,涂层经3%盐水腐蚀360 h无明显变化,经中性盐雾腐蚀144 h无明显变化.  相似文献   

8.
采用低温化学方法在AZ31B镁合金表面制备出氟涂层,并研究了涂层的表面特征,氟处理后AZ31B镁合金在模拟体液中的腐蚀行为。结果表明,氟涂层均匀致密,与基体结合良好。经氟处理后的AZ31B镁合金的耐蚀性能有较大提高,其在模拟体液中的降解缓慢,合金浸泡后溶液的pH值保持在7.5~8.8之间,有效降低了合金降解而引起的碱性增强趋势。氟涂层在模拟体液中会逐渐转化为Ca3(PO4)2,新生成的表面膜会继续起到保护合金基体的作用。  相似文献   

9.
为了改善镁合金的耐蚀性,扩展其应用范围,采用等离子全方位离子镀膜技术在AZ31镁合金表面沉积了含有Si-N和Si-O的2种类金刚石(Diamond-like carbon,DLC)薄膜,研究了其表面形貌及其在3.5%NaCl溶液中的腐蚀行为,探究了DLC薄膜对AZ31镁合金腐蚀行为的影响。利用SEM和AFM观察了AZ31镁合金表面沉积DLC薄膜的表面形貌,采用电化学法测试表面沉积DLC薄膜的AZ31镁合金在3.5%NaCl溶液中的极化曲线和开路电位,通过拉伸试验测试其在空气和3.5%NaCl溶液中的应力应变。结果表明:镁合金试样表面的DLC薄膜光滑致密,在3.5%NaCl溶液中表面沉积DLC薄膜AZ31镁合金的极化行为与表面未沉积DLC薄膜AZ31镁合金相似,表面沉积DLC薄膜AZ31镁合金电位正向移动,耐蚀性提高;与表面未沉积DLC薄膜AZ31镁合金相比,在空气中,表面沉积DLC薄膜AZ31镁合金极限抗拉强度与其接近,延伸率略低;在3.5%NaCl溶液中,表面沉积DLC薄膜AZ31镁合金极限抗拉强度略有降低,延伸率略高。  相似文献   

10.
AZ31B镁合金磷化工艺研究   总被引:2,自引:0,他引:2  
高焕方  赵春雪  罗天元  李聪 《表面技术》2008,37(4):37-38,56
应用Tafel极化曲线分析方法,对在不同磷化时间及不同磷化温度条件下磷化的AZ31B镁合金的防腐性能进行了研究,此外还研究了磷化膜的存在对AZ31B镁合金表面环氧涂层防腐性能的影响.研究结果表明:磷化时间及磷化温度对AZ31B镁合金磷化膜的防腐性能有较大影响,其最佳磷化时间为5min,最佳磷化温度为50℃.在最佳条件下,磷化膜的腐蚀电流密度最小,腐蚀电位明显正移,且极化电阻最大.此外,磷化膜的存在使环氧涂层在AZ31B镁合金表面的腐蚀电流密度下降了3个数量级,腐蚀电位正向移动了588mV,即磷化膜可提高环氧涂层在AZ31B镁合金表面的防腐性能.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号