首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 243 non-starter lactobacilli were isolated from 12 premium quality Indian Cheddar cheese samples ripened for different periods and in different plant conditions. They were classified up to species level using mainly sugar fermentation assay and PCR. Based upon phenotypes, a maximum of 46.50% were classified as Lactobacillus paracasei, followed by 34.98% isolates as Lactobacillus plantarum. Only 3.29% were classified as Lactobacillus rhamnosus and 4.12% as Lactobacillus delbrueckii species, while 22 (9.05%) isolates (of which 16 L. plantarum/Lactobacillus paraplantarum and 6 Lactobacillus delbrueckii ssp. lactis/Lactobacillus crispatus) could not be designated to a single species. One isolate of Lactobacillus coryniformis ssp. coryniformis was isolated for the first time from Cheddar cheese (0.41%) while 1.65% isolates remained unidentified. Mostly, the tentative characterization based on phenotype, could be confirmed by PCR targeting rRNA. Those isolate groups which could not be tested in PCR, or resembled with more than one species in their phenotypic traits, could be resolved by the BLAST homology analysis of the partial tuf gene sequences of few representative isolates.  相似文献   

2.
Tectoridin could be hydrolyzed to tectorigenin by β-glucosidase-producing intestinal bacteria. In this study, nine strains of Lactobacillus and bifidobacteria were screened for high levels of β-glucosidase activity. We investigated their ability to transform tectoridin from Pueraria flos to tectorigenin. Lactobacillus reuteri DSM20016 showed the highest cell-envelope associated β-glucosidase activity, whereas the intracellular β-glucosidase activity from Bifidobacterium adolescentis ATCC15703 was higher than the other screened bacterial strains. L. reuteri DSM20016, Lactobacillus rhamnosus GGB41031 and B. adolescentis ATCC15703 showed high bioconversion rate of tectoridin. L. reuteri DSM20016 showed the highest bioconversion efficiency of tectoridin, 100% tectoridin was hydrolyzed and there was an approximate 185-fold increase in the concentration of tectorigenin after 24 h. The present study suggests that L. reuteri DSM20016, L. rhamnosus GGB41031 and B. adolescentis ATCC15703 have great potential for converting tectoridin from Pueraria flos to more bioactive tectorigenin.  相似文献   

3.
We evaluated the influence of ultrahigh pressure homogenization (UHPH) treatment applied to milk containing Staphylococcus aureus CECT 976 before cheese making, and the benefit of applying a further high hydrostatic pressure (HHP) treatment to cheese. The evolution of Staph. aureus counts during 30 d of storage at 8°C and the formation of staphylococcal enterotoxins were also assessed. Milk containing approximately 7.3 log10 cfu/mL of Staph. aureus was pressurized using a 2-valve UHPH machine, applying 330 and 30 MPa at the primary and the secondary homogenizing valves, respectively. Milk inlet temperatures (Tin) of 6 and 20°C were assayed. Milk was used to elaborate soft-curd cheeses (UHPH cheese), some of which were additionally submitted to 10-min HHP treatments of 400 MPa at 20°C (UHPH+HHP cheese). Counts of Staph. aureus were measured on d 1 (24 h after manufacture or immediately after HHP treatment) and after 2, 15, and 30 d of ripening at 8°C. Counts of control cheeses not pressure-treated were approximately 8.5 log10 cfu/g showing no significant decreases during storage. In cheeses made from UHPH treated milk at Tin of 6°C, counts of Staph. aureus were 5.0 ± 0.3 log10 cfu/g at d 1; they decreased significantly to 2.8 ± 0.2 log10 cfu/g on d 15, and were below the detection limit (1 log10 cfu/g) after 30 d of storage. The use of an additional HHP treatment had a synergistic effect, increasing reductions up to 7.0 ± 0.3 log10 cfu/g from d 1. However, for both UHPH and UHPH+HHP cheeses in the 6°C Tin samples, viable Staph. aureus cells were still recovered. For samples of the 20°C Tin group, complete inactivation of Staph. aureus was reached after 15 d of storage for both UHPH and UHPH+HHP cheese. Staphylococcal enterotoxins were found in controls but not in UHPH or UHPH+HHP treated samples. This study shows a new approach for significantly improving cheese safety by means of using UHPH or its combination with HHP.  相似文献   

4.
This work reports on the physicochemical characterization of 21 exopolysaccharides (EPS) produced by Lactobacillus and Bifidobacterium strains isolated from human intestinal microbiota, as well as the growth and metabolic activity of the EPS-producing strains in milk. The strains belong to the species Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus vaginalis, Bifidobacterium animalis, Bifidobacterium longum, and Bifidobacterium pseudocatenulatum. The molar mass distribution of EPS fractions showed 2 peaks of different sizes, which is a feature shared with some EPS from bacteria of food origin. In general, we detected an association between the EPS size distribution and the EPS-producing species, although because of the low numbers of human bacterial EPS tested, we could not conclusively establish a correlation. The main monosaccharide components of the EPS under study were glucose, galactose, and rhamnose, which are the same as those found in food polymers; however, the rhamnose and glucose ratios was generally higher than the galactose ratio in our human bacterial EPS. All EPS-producing strains were able to grow and acidify milk; most lactobacilli produced lactic acid as the main metabolite. The lactic acid-to-acetic acid ratio in bifidobacteria was 0.7, close to the theoretical ratio, indicating that the EPS-producing strains did not produce an excessive amount of acetic acid, which could adversely affect the sensory properties of fermented milks. With respect to their viscosity-intensifying ability, L. plantarum H2 and L. rhamnosus E41 and E43R were able to increase the viscosity of stirred, fermented milks to a similar extent as the EPS-producing Streptococcus thermophilus strain used as a positive control. Therefore, these human EPS-producing bacteria could be used as adjuncts in mixed cultures for the formulation of functional foods if probiotic characteristics could be demonstrated. This is the first article reporting the physicochemical characteristics of EPS isolated from human intestinal microbiota.  相似文献   

5.
Specific strains should only be regarded as probiotics if they fulfill certain safety, technological and functional criteria. The aim of this work was to study, from a comprehensive point of view (in vitro and in vivo tests), three Lactobacillus strains (Lactobacillus paracasei JP1, Lactobacillus rhamnosus 64 and Lactobacillus gasseri 37) isolated from feces of local newborns, determining some parameters of technological, biological and functional relevance. All strains were able to adequately grow in different economic culture media (cheese whey, buttermilk and milk), which were also suitable as cryoprotectants. As selective media, LP-MRS was more effective than B-MRS for the enumeration of all strains. The strains were resistant to different technological (frozen storage, high salt content) and biological (simulated gastrointestinal digestion after refrigerated storage in acidified milk, bile exposure) challenges. L. rhamnosus 64 and L. gasseri 37, in particular, were sensible to chloramphenicol, erythromycin, streptomycin, tetracycline and vancomycin, increased the phagocytic activity of peritoneal macrophage and induced the proliferation of IgA producing cells in small intestine when administered to mice. Even when clinical trails are still needed, both strains fulfilled the main criteria proposed by FAO/WHO to consider them as potential probiotics for the formulation of new foods.  相似文献   

6.
Physiological properties of homogenized and non-homogenized polysaccharide from the seeds of Plantago asiatica L., including antioxidant capacity and short-chain fatty acid (SCFA) production, were compared in this study. High pressure homogenization decreased particle size of the polysaccharide, and changed the surface topography from large flake-like structure to smaller porous chips. FT-IR showed that high pressure homogenization did not alter the primary structure of the polysaccharide. However, high pressure homogenization increased antioxidant capacity of the polysaccharide, evaluated by 4 antioxidant capacity assays (hydroxyl radical-scavenging, superoxide radical-scavenging, 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH)-scavenging and lipid peroxidation inhibition). Additionally, the production of total SCFA, propionic acid and n-butyric acid in ceca and colons of mice significantly increased after dieting supplementation with homogenized polysaccharide. These results showed that high pressure homogenization treatment could be a promising approach for the production of value-added polysaccharides in the food industry.  相似文献   

7.
Temperate bacteriophages ф iLp84 and ф iLp1308, previously isolated from mitomycin C-induction of Lactobacillus paracasei strains 84 and CNRZ1308, respectively, were tested for their resistance to several physical and chemical treatments applied in dairy industry. Long-term survival at 4 °C, −20 °C and −80 °C, resistance to either thermal treatments of 63 °C, 72 °C and 90 °C, high pressure homogenization (HPH, 100 MPa) or classic (ethanol, sodium hypochlorite and peracetic acid) and new commercial sanitizers, namely A (quaternary ammonium chloride), B (hydrogen peroxide, peracetic acid and peroctanoic acid), C (alkaline chloride foam), D (p-toluensulfonchloroamide, sodium salt) and E (ethoxylated nonylphenol and phosphoric acid), were determined. Phages were almost completely inactivated after eight months of storage at 25 °C, but viability was not affected at 4 °C, −20 °C or −80 °C. Both phages tolerated well HPH treatments. Phage iLp1308 showed higher thermal resistance than ф iLp84, but neither resisted 90 °C for 2 min. Best chemical inactivation was accomplished using peracetic acid or biocides A, C and E, whereas biocides B and D were completely ineffective. These results help to improve selection of chemical agents and physical treatments to effectively fight against phage infections in dairy plants.  相似文献   

8.
Lactobacillus is among the most important GRAS food lactic acid bacteria, with nearly 140 species at present, mostly of industrial importance. Being part of the natural flora of a range of food products like raw milk, fermented dairy products, fruits, vegetables, meat products they also serve as starters for a number of fermented food products either to enhance the quality or to add health benefits. These groups of economically important species are often alike in phenotypic and physiological characteristics, probably due to their co-evolution in the same ecological niches; hence they are difficult to be differentiated. This demands advanced methods for their proper identification and characterization. With the advancement of molecular biology, a range of DNA-based molecular techniques has replaced the largely cumbersome phenotypic methods. This review summarizes the various molecular techniques available for detection and identification within the genus Lactobacillus, with special emphasis on the four groups of closely resembling species: L. casei group, L. acidophilus group, L. delbrueckii subspecies, and L. plantarum group. This review also provides insights into current trends for alternative molecular markers other than 16S rRNA to resolve the ambiguity within phylogenetically close species in the genus Lactobacillus.  相似文献   

9.
Listeria monocytogenes CCUG 15526 was inoculated at a concentration of approximately 7.0 log10 cfu/mL in milk samples with 0.3, 3.6, 10, and 15% fat contents. Milk samples with 0.3 and 3.6% fat content were also inoculated with a lower load of approximately 3.0 log10 cfu/mL. Inoculated milk samples were subjected to a single cycle of ultra-high-pressure homogenization (UHPH) treatment at 200, 300, and 400 MPa. Microbiological analyses were performed 2 h after the UHPH treatments and after 5, 8, and 15 d of storage at 4°C. Maximum lethality values were observed in samples treated at 400 MPa with 15 and 10% fat (7.95 and 7.46 log10 cfu/mL), respectively. However, in skimmed and 3.6% fat milk samples, complete inactivation was not achieved and, during the subsequent 15 d of storage at 4°C, L. monocytogenes was able to recover and replicate until achieving initial counts. In milk samples with 10 and 15% fat, L. monocytogenes recovered to the level of initial counts only in the milk samples treated at 200 MPa but not in the milk samples treated at 300 and 400 MPa. When the load of L. monocytogenes was approximately 3.0 log10 cfu/mL in milk samples with 0.3 and 3.6% fat, complete inactivation was not achieved and L. monocytogenes was able to recover and grow during the subsequent cold storage. Fat content increased the maximum temperature reached during UHPH treatment; this could have contributed to the lethal effect achieved, but the amount of fat of the milk had a stronger effect than the temperature on obtaining a higher death rate of L. monocytogenes.  相似文献   

10.
Mycobacterium avium ssp. paratuberculosis (MAP) can be present in cow milk and low numbers may survive high-temperature, short-time (HTST) pasteurization. Although HTST treatment leads to inactivation of at least 5 log10 cycles, it might become necessary to enhance the efficacy of HTST by additional treatments such as homogenization if the debate about the role of MAP in Crohn’s disease of humans concludes that MAP is a zoonotic agent. This study aimed to determine whether disrupting the clumps of MAP in milk by homogenization during the heat treatment process would enhance the inactivation of MAP. We used HTST pasteurization in a continuous-flow pilot-plant pasteurizer and evaluated the effect of upstream, downstream, and in-hold homogenization on inactivation of MAP. Reduction of MAP at 72°C with a holding time of 28 s was between 3.7 and 6.9 log10 cycles, with an overall mean of 5.5 log10 cycles. None of the 3 homogenization modes applied showed a statistically significant additional effect on the inactivation of MAP during HTST treatment.  相似文献   

11.
In vitro studies, animal models, epidemiology, and human intervention studies provide evidence that some lactic acid bacteria can reduce the risk of certain cancers. In this study, heat-killed bacterial cells, genomic DNA, and cell wall of 7 wild Lactobacillus strains isolated from traditional fermented foods in western China were tested in vitro for cytotoxicity on colonic cancer cell line HT-29 by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The heat-killed bacterial cells, genomic DNA, and cell wall of the 7 strains exhibited direct antiproliferative activities against HT-29 cells. Among the strains, the cellular components of Lactobacillus coryniformis ssp. torquens T3L exerted marked antiproliferative activities against HT-29 cells. The maximum inhibition rates of HT-29 cells by the heat-killed bacterial cells (1 × 107 cfu/mL), cell wall (20 μg of protein/mL) and genomic DNA (100 μg/mL) of L. coryniformis ssp. torquens T3L were 30, 44.9, and 35.9%, respectively. The results indicate that the heat-killed bacterial cells, cell wall, and genomic DNA of the 7 wild Lactobacillus strains could inhibit the growth of HT-29 cells.  相似文献   

12.
The combined effects of high pressure processing (HPP) and pH on the glycolytic and proteolytic activities of Lactococcus lactis subsp. lactis, a commonly used cheese starter culture and the outgrowth of spoilage yeasts of Candida species were investigated in a fermented milk test system. To prepare the test system, L. lactis subsp. lactis C10 was grown in UHT skim milk to a final pH of 4.30 and then additional samples for treatment were prepared by dilution of fermented milk with UHT skim milk to pH levels of 5.20 and 6.50. These milk samples (pH 4.30, 5.20 and 6.50) with or without an added mixture of two yeast cultures, Candida zeylanoides and Candida lipolytica (105 CFU mL−1 of each species), were treated at 300 and 600 MPa (≤20 °C, 5 min) and stored at 4 °C for up to 8 weeks. Continuing acidification by starter cultures, as monitored during storage, was substantially reduced in the milk pressurised at pH 5.20 where the initial titratable acidity (TA) of 0.40% increased by only 0.05% (600 MPa) and 0.10% (300 MPa) at week 8, compared to an increase of 0.30% in untreated controls. No substantial differences were observed in pH or TA between pressure-treated and untreated milk samples at pH 4.30 or 6.50. The rate of proteolysis in milk samples at pH values of 5.20 and 6.50 during storage was significantly reduced by treatment at 600 MPa. Treatment at 600 MPa also reduced the viable counts of both Candida yeast species to below the detection limit (1 CFU mL−1) at all pH levels for the entire storage period. However, samples treated at 300 MPa showed recovery of C. lipolytica from week 3 onwards, reaching 106–107 CFU mL−1 by week 8. In contrast, C. zeylanoides did not show any recovery in any of the pressure-treated samples during storage.  相似文献   

13.
High pressure homogenization (HPH) is a novel non-thermal preservation technology, which can improve the microbiological quality of products without affecting their stability. The main objective of this paper is to study the influence of different HPH treatments on the structure of a sauce (an egg/dairy emulsion), in order to obtain the higher physicochemical stability. The oil-in-water emulsion was stable up to 100 MPa with the oil droplets surrounded by several layers of natural emulsifiers. Critical pressures, between 150 and 250 MPa, produced a destabilization of the emulsion thus causing a separation of phases. A coalescence phenomenon progressively occurred when pressure increased. This phenomenon was due to the loss of the natural emulsifier barrier. Changes on the electrophoretic pattern were also observed at high pressure levels, showing an insolubilization of proteins. Lipid fraction was observed to be chemically stable after the HPH treatment.  相似文献   

14.
The methanolic fresh leaf extracts of Macaranga gigantea, Macaranga pruinosa, Macaranga tanarius and Macaranga triloba were screened for their antioxidant properties (AOP), tyrosinase inhibition and antibacterial activities. Total phenolic content (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, ferric-ion reducing power (FRAP), ferrous-ion chelating (FIC) and lipid peroxidation inhibition (LPI) activities were used to evaluate the AOP. Modified 3,4-dihydroxy-L-phenylalanine (L-DOPA) method was used to determine tyrosinase inhibition activity, whereas antibacterial activity was determined using the disc-diffusion technique. TPC screening of the same species from different collection sites showed no significant difference between sites. M.triloba showed the highest ascorbic acid equivalent antioxidant activity (AEAC), FRAP and LPI values. M. tanarius, which showed the lowest TPC, AEAC, FRAP and LPI activities, exhibited the best FIC activity. M. pruinosa showed the best tyrosinase inhibition activity, whereas M. triloba showed the best antibacterial activity against Gram-positive bacteria species, with minimal inhibition dosage (MID) values as low as 10 μg/disc.  相似文献   

15.
The aim of this research was to ascertain the lactic acid bacteria responsible for the degradation of ascorbic acid and/or potassium sorbate, isolated from packed green olives where these additives had diminished. A total of 14 isolates were recovered from samples of different green olive containers. According to partial sequencing of the 16S rRNA coding gene, Lactobacillus parafarraginis, Lactobacillus rapi, Lactobacillus pentosus, Lactobacillus paracollinoides, and Pediococcus ethanolidurans were identified. With the exception of L. pentosus and L. paracollinoides, the other species had not been mentioned in table olives before this study. Only three of the 14 isolates metabolized ascorbic acid in MRS broth, and the products from ascorbic acid in modified MRS broth without carbon sources were acetic and lactic acids. Except for the two L. rapi and the two P. ethanolidurans strains, the remaining 10 isolates depleted potassium sorbate added into MRS broth to some extent. The product generated by three of these strains was confirmed to be trans-4-hexenoic acid. The degradation of ascorbate or sorbate by lactic acid bacteria should be taken into account when these additives are used in food products where this group of bacteria may be present.  相似文献   

16.
Prophages account for most of the genetic diversity among strains of a given bacterial species, and represent a latent source for the generation of virulent phages. In this work, a set of 30 commercial, collection and dairy-isolated Lactobacillus casei group strains were used. A species-specific PCR assay allowed a reclassification, mainly of strains previously considered Lactobacillus casei, into either Lactobacillus paracasei or Lactobacillus rhamnosus. All the strains were induced with mitomycin C, allowing direct recovering of phage DNA in 25 cases, which corroborates the widely occurrence of lysogeny on Lactobacillus genomes, including probiotic strains of Lactobacillus casei group. Ten out of 11 commercial strains studied contained prophages, evidencing the potential risks of their use at industrial scale. Strains were also induced by treatment with different concentrations of hydrogen peroxide but, however, this agent was not able to evidence a prophage release for any of the strains tested. According to a RAPD-PCR fingerprinting with M13, 1254 and G1 primers, most of the commercial strains presented a high degree of homology and, regarding BglII- and BamHI-restriction profiles of phage DNA, six of them harboured the same prophage. Surprisingly, both Lactobacillus paracasei ATCC 27092 and Lactobacillus paracasei ATCC 27139 shared a second prophage with both an INLAIN collection and a commercial Lactobacillus paracasei strains, whereas two collection strains shared a third one. On the other hand, mitomycin C-inducible prophages were detected only on about a half of the strains isolated from dairy products, which had (with only one exception) from moderate to high correlation coefficients according to RAPD-PCR fingerprinting. After induction, supernatants were filtered and tested against nine Lactobacillus strains of the set sensitive to previously assayed virulent phages, allowing isolation of two new virulent phages: ф iLp1308 and ф iLp84. Both phages were able to lyse all but one strains sensitive to previously assayed phage MLC-A.  相似文献   

17.
18.
In this study, the relationship between (irreversible) membrane permeabilization and loss of viability in Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae cells subjected to high pressure carbon dioxide (HPCD) treatment at different process conditions including temperature (35–45 °C), pressure (10.5–21.0 MPa) and treatment time (0–60 min) was examined. Loss of membrane integrity was measured as increased uptake of the fluorescent dye propidium iodide (PI) with spectrofluorometry, while cell inactivation was determined by viable cell count. Uptake of PI by all three strains indicated that membrane damage is involved in the mechanism of HPCD inactivation of vegetative cells. The extent of membrane permeabilization and cellular death increased with the severity of the HPCD treatment. The resistance of the three tested organisms to HPCD treatment changed as a function of treatment time, leading to significant tailing in the survival curves, and was dependent on pressure and temperature. The results in this study also indicated a HPCD-induced damage on nucleic acids during cell inactivation. Transmission electron microscopy showed that HPCD treatment had a profound effect on the intracellular organization of the micro-organisms and influenced the permeability of the bacterial cells by introducing pores in the cell wall.  相似文献   

19.
高压CO_2杀菌和超高压均质杀菌都是非常有前途的非热杀菌技术。为了进一步提升其杀菌能力,把高压CO_2杀菌与超高压均质杀菌有机地结合起来,构建一个新型的高压CO_2与超高压均质协同杀菌技术,并对其工作原理、工作特点、结构组成进行系统的阐述,搭建协同杀菌试验平台。通过酿酒酵母的杀菌试验,验证了协同杀菌系统优于单一的高压CO_2杀菌或超高压均质杀菌。  相似文献   

20.
The effect of additives and post-treatment incubation conditions on the recovery of high pressure and heat-injured (i.e., processed at 620 MPa and 95 and 100 °C for 5 min) spores of Clostridium botulinum strains, 62-A (proteolytic type A) and 17-B (nonproteolytic type B) was studied. High pressure and heat-injured spores were inoculated into TPGY (Trypticase–Peptone–Glucose–Yeast extract) anaerobic broth media containing additives (lysozyme, l-alanine, l-aspartic acid, dipicolonic acid, sodium bicarbonate, and sodium lactate) at various concentrations (0–10 μg/ml) individually or in combination. The spore counts of high pressure and heat-injured 62-A and 17-B recovered from TPGY broth containing lysozyme (10 μg/ml) incubated for 4 months versus that recovered from peptone–yeast extract–glucose–starch (PYGS) plating agar containing lysozyme (10 μg/ml) incubated under anaerobic conditions for 5 days were also compared. None of the additives either individually or in combination in TPGY broth improved recovery of injured spore enumeration compared to processed controls without additives. Addition of lysozyme at concentrations of 5 and 10 μg/ml in TPGY broth improved initial recovery of injured spores of 17-B during the first 4 days of incubation but did not result in additional recovery at the end of the 4 month incubation compared to the processed control without lysozyme. Adding lysozyme at a concentration of 10 μg/ml to PYGS plating agar resulted in no effect on the recovery of high pressure and heat-injured 62-A and 17-B spores. The recovery counts of high pressure and heat-injured spores of 62-A and 17-B were lower (i.e., <1.0 log units) with PYGS plating agar compared to the MPN method using TPGY broth as the growth medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号