首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Al2O3/5-vol%-SiC nanocomposites have been fabricated by using pressureless sintering with MgO and/or Y2O3 sintering aids and post-hot isostatic pressing (HIPing), which circumvents the limitations of hot pressing. Al2O3/SiC nanocomposites that have been doped with 0.1 wt% MgO and 0.1 wt% MgO + 0.1 wt% Y2O3 show an increased sintering density and a homogeneous microstructure, as well as a high fracture strength (1 GPa) after HIPing. In contrast, using Y2O3 as a dopant has a negative impact on the microstructure and the fracture strength. The results suggest that MgO, as a sintering additive, has a key role in improving the densification and controlling the microstructure of Al2O3/SiC nanocomposites.  相似文献   

2.
The stabilities of different phases in the Si-Al-C-O system are calculated from thermodynamic considerations with the objective of identifying the liquid phases formed during sintering of SiC in the presence of Al2O3. It is shown that a liquid phase can form at the sintering temperatures by the reaction of SiC with Al2O3. Depending on the carbon activity, the liquid can be either of the following: Al2O3+ Al4C3, SiC + Al4C3, or molten aluminum. The stability of the aluminosilicate melts that can form by the reaction of Al2O3 with the surface silica layer on SiC powders is also evaluated. Several factors that influence liquid-phase sintering, such as the solubility of SiC in the melts and the generation of gases during sintering, are discussed. The results of the thermodynamic analysis are compared with the observed sintering behavior for SiC.  相似文献   

3.
Ceria-doped tetragonal zirconia (Ce-TZP)/alumina (Al2O3) composites were fabricated by sintering at 1450° to 1600°C in air, followed by hot isostatic pressing (postsintering hot isostatic pressing) at 1450°C and 100 MPa in an 80 vol% Ar–20 vol% O2 gas atmosphere. Dispersion of Al2O3 particles into Ce-TZP was useful in increasing the relative density and suppressing the grain growth of Ce-TZP before hot isostatic pressing, but improvement of the fracture strength and fracture toughness was limited. Postsintering hot isostatic pressing was useful to densify Ce-TZP/Al2O3 composites without grain growth and to improve the fracture strength and thermal shock resistance.  相似文献   

4.
The isothermal shrinkage behavior of 2.9 mol% Y2O3-doped ZrO2 powders with 0–1 mass% Al2O3 was investigated to clarify the effect of Al2O3 concentration on the initial sintering stage. The shrinkage of the powder compact was measured at constant temperatures in the range of 950°–1050°C. The Al2O3 addition increased the densification rate with increasing temperature. The values of apparent activation energy ( nQ ) and apparent frequency-factor term (β0 n ), where n is the order depending on the diffusion mechanism, were estimated at the initial sintering stage by applying a sintering-rate equation to the isothermal shrinkage data. The diffusion mechanism changed from grain-boundary diffusion (GBD) to volume diffusion (VD) by Al2O3 addition and both nQ and β0 n increased with increasing Al2O3 concentration. The kinetic analysis of the sintering mechanism suggested that the increase of densification rate by Al2O3 addition largely depends on the increase of β0 n , that is, the increases of n with GBD→VD change and β0 with an increase in Al2O3 content, although the nQ also increases with Al2O3 addition. This enhanced sintering mechanism is reasonably interpreted by the segregated dissolution of Al2O3 at ZrO2 grain boundaries.  相似文献   

5.
Tape casting and electroless plating were used to fabricate Al2O3/Ni laminar ceramic composites with close control of the thickness of the Al2O3 and Ni layers. Ninety-seven percent relative density, macrodefect-free composites were obtained by spark plasma sintering. In electroless plating solutions, the stable potential of grain boundary led to the first deposition of nickel on the grain boundary of Al2O3. Scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction were used to analyze the structure, elements distribution, and phase composition of the Al2O3/Ni laminar composites.  相似文献   

6.
SiAION Ceramics     
The phase relations in and physical properties of SiAlON ceramics prepared by the hot isostatic pressing technique or by pressureless sintering with a sintering aid are reviewed. The sintering aid used is an AIN and Al2O3 mixture either pure or in combination with Y2O3 and/or various rare-earth oxides. Special attention is paid to the amount and type of phase(s) formed and to how properties such as hardness (HV10), fracture toughness ( K IC), and oxidation resistance vary with the sintering aid used for different types of SiAlON materials, i.e., O'-, almost monophasic α-, pure β-, and mixed (α+β)-SiAION Ceramics.  相似文献   

7.
The sinterabilities of fine zirconia powders including 5 mass% Y2O3 were investigated, with emphasis on the effect of Al2O3 at the initial sintering stage. The shrinkage of powder compact was measured under constant rates of heating (CRH). The powder compact including a small amount of Al2O3 increased the densification rate with elevating temperature. The activation energies at the initial stage of sintering were determined by analyzing the densification curves. The activation energy of powder compact including Al2O3 was lower than that of a powder compact without Al2O3. The diffusion mechanisms at the initial sintering stage were determined using the new analytical equation applied for CRH techniques. This analysis exhibited that Al2O3 included in a powder compact changed the diffusion mechanism from grain boundary to volume diffusions (VD). Therefore, it is concluded that the effect of Al2O3 enhanced the densification rate because of decrease in the activation energy of VD at the initial sintering stage.  相似文献   

8.
Yttria-ceria-doped tetragonal zirconia (Y,Ce)-TZP)/alumina (Al2O3) composites were fabricated by hot isostatic pressing at 1400° to 1450°C and 196 MPa in an Ar–O2 atmosphere using the fine powders prepared by hydrolysis of ZrOCl2 solution. The composites consisting of 25 wt% Al2O3 and tetragonal zirconia with compositions 4 mol% YO1.5–4 mol% CeO2–ZrO2 and 2.5 mol% YO1.5–5.5 mol% CeO2–ZrO2 exhibited mean fracture strength as high as 2000 MPa and were resistant to phase transformation under saturated water vapor pressure at 180°C (1 MPa). Postsintering hot isostatic pressing of (4Y, 4Ce)-TZP/Al2O3 and (2.5Y, 5.5Ce)-TZP/Al2O3 composites was useful to enhance the phase stability under hydrothermal conditions and strength.  相似文献   

9.
Porous Al2O3 and SiC–dispersed-Al2O3 (Al2O3/SiC) nanocomposites with improved mechanical properties were fabricated using pulse electric current sintering (PECS). Microstructures with fine grains and enhanced neck growth, as well as high fracture strength, could be achieved via PECS of Al2O3. The incorporation of fine SiC particles into an Al2O3 matrix significantly increased the fracture strength of porous Al2O3. Based on microstructural observations, it was revealed that the refinement of Al2O3 grains and neck growth occurred by PECS and nanocomposite processing.  相似文献   

10.
The sintering of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler is terminated due to the crystallization of Al4B2O9 in the glass. The densification of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler using pressureless sintering was accomplished by lowering the sintering temperature of the composite. The sintering temperature was lowered by the addition of small amounts of alkali metal oxides to the MgO–B2O3–Al2O3 glass system. The resultant composite has a four-point bending strength of 280 MPa, a coefficient of thermal expansion (RT—200°C) of 4.4 × 10−6 K−1, a dielectric constant of 6.0 at 1 MHz, porosity of approximately 1%, and moisture resistance.  相似文献   

11.
The mechanical properties of Al2O3-based porous ceramics fabricated from pure Al2O3 powder and the mixtures with Al(OH)3 were investigated. The fracture strength of the porous Al2O3 specimens sintered from the mixture was substantially higher than that of the pure Al2O3 sintered specimens because of strong grain bonding that resulted from the fine Al2O3 grains produced by the decomposition of Al(OH)3. However, the elastic modulus of the porous Al2O3 specimens did not increase with the incorporation of Al(OH)3, so that the strain to failure of the porous Al2O3 ceramics increased considerably, especially in the specimens with high porosity, because of the unique pore structures related to the large original Al(OH)3 particles. Fracture toughness also increased with the addition of Al(OH)3 in the specimens with higher porosity. However, fracture toughness did not improve in the specimens with lower porosity because of the fracture-mode transition from intergranular, at higher porosity, to transgranular, at lower porosity.  相似文献   

12.
Pure Al2O3 and different compositions of La2O3–Al2O3 samples have been prepared through coprecipitation. Even after heating at 1300°C, the compositions La2O3·11Al2O3 and La2O3·13Al2O3 had higher surface area compared to the pure Al2O3 and the La2O3·Al2O3 composition. Ethanol washing is an effective way for improving the textural stability of pure Al2O3 and La2O3–Al2O3 samples. The effect of steam on the thermal stability of La2O3·11Al2O3 has also been studied. La2O3·11Al2O3 sample is found to be stable in steam.  相似文献   

13.
High-density nickel–dispersed-alumina (Al2O3/nickel) composites with superior mechanical properties were obtained by the hydrogen reduction and the hot pressing of alumina–nickel oxide (Al2O3/NiO) mixed powders. The mixtures were prepared by using NiO or nickel nitrate (Ni(NO3)2· n H2O) as a dispersion source of nickel metal. Microstructural investigations of the composite fabricated using nitrate powder revealed that fine nickel particles, } 100 nm in diameter, dispersed homogeneously at the matrix grain boundaries, forming the intergranular nanocomposite. High strength (.1 GPa) and high-temperature hardness were registered for the composite that contained a small amount of nickel dispersion. The ferromagnetic properties of nickel, such as high coercive force, were observed, because of the fine magnetic dispersions, which indicates a functional value of structural composites.  相似文献   

14.
Boundary migration under an electric field was investigated for pure, TiO2-doped, and Li2O-doped Al2O3 specimens. Boundary migration rates in TiO2-doped and Li2O-doped Al2O3 specimens were much faster compared with that of pure Al2O3. In all specimens, the migration rate was observed to depend on the applied bias direction. Compared with pure Al2O3, the dependence of boundary migration on bias direction became more pronounced in TiO2-doped Al2O3 but less pronounced in Li2O-doped Al2O3. The results were explained in terms of the variation of grain sizes, mobility, and electrostatic potential of boundaries because of doping.  相似文献   

15.
The feasibility of creating "tough surface material" using oxide-fiber-reinforced oxide matrix ceramics was studied. Al2O3 fiber/(ZrO2, Al2O3) matrix composite was used as the surface material of a Si–Ti–C–O-fiber-bonded composite. The sintering of the matrix (ZrO2 and Al2O3) of the surface composite layer (SCL) and its bonding to the fiber-bonded composite (FBC) were done simultaneously by vacuum hot pressing. A spherical indentation test demonstrated the advantage of the SCL in reducing the damage of the base FBC from an indenter, because the high fracture resistance of the surface composite layer could reduce the stress concentration by the cumulative microfracture process.  相似文献   

16.
The microstructures of niobium-based alumina composites prepared by pressureless sintering of compacts of attrition milled Al2O3, Nb, and Al powder mixtures were studied. The addition of a small amount of Al is assumed to assist in rapid sintering. X-ray diffraction analyses show that Al2O3, Nb, NbO, and the intermetallics AlNb2 and AlNb3 are present in the composites. Electron microscopy studies confirm the existence of these phases and reveal dense, fine-grained (≤500 nm) composites. Al2O3 and Nb grains form the matrix. NbO occurs as grains and additionally as small particles within Al2O3 grains and at Al2O3/Al2O3 grain boundaries. The intermetallic AlNb2 and AlNb3 phases do not exceed 300 nm in size if they occur at grain boundaries, and possess even smaller dimensions when occluded within Al2O3 grains or located at Al2O3 triple junctions. While the niobium intermetallics are expected to form during the heating cycle before reaching the sintering temperature, the NbO is assumed to form during the cooling cycle due to precipitation of oxygen dissolved in the niobium.  相似文献   

17.
AlN–AlN polytypoid composite materials were prepared in situ using pressureless sintering of AlN–Al2O3 mixtures (3.7–16.6 mol% Al2O3) using Y2O3 (1.4–1.5 wt%) as a sintering additive. Materials fired at 1950°C consisted of elongated grains of AlN polytypoids embedded in equiaxed AlN grains. The Al2O3 content in the polytypoids varied systematically with the overall Al2O3 content, but equilibrium phase composition was not established because of slow nucleation rate and rapid grain growth of the polytypoid grains. The polytypoids, 24 H and 39 R , previously not reported, were identified using HRTEM. Solid solution of Y2O3 in the polytypoids was demonstrated, and Y2O3 was shown to influence the stability of the AlN polytypoids. The present phase observations were summarized in a phase diagram for a binary section in the ternary system AlN–Al2O3–Y2O3 parallel to the AlN–Al2O3 join. Fracture toughness estimated from indentation measurements gave no evidence for a strengthening mechanism due to the elongated polytypoids.  相似文献   

18.
The sintering behavior of an Al2O3 compact containing uniformly dispersed Al2O3 platelets has been investigated. The results reveal a significant decrease in the sintering rate as well as the formation of voids and cracklike defects in the presence of nonsinterable platelets. The addition of a small amount (2 vol%) of tetragonal-ZrO2 particles enhances the sintering rate, increases end-point density (∼99.5% of theoretical density) and prevents formation of sintering defects.  相似文献   

19.
Two different zirconia-alumina composites, ZTA-30 (70 wt% Al2O3+30 wt% ZrO2) and ZTA-60 (40 wt% Al2O3+60 wt% ZrO2), with potential for orthopedic applications, were processed in aqueous media and consolidated by slip casting (SC), hydrolysis-assisted solidification (HAS), and gelcasting (GC) from suspensions containing 50 vol% solids loading. For comparison purposes, the same ceramic compositions were also consolidated by die pressing of freeze-dried granules (FG). In the HAS process, 5 wt% of Al2O3 in the precursor mixture was replaced by equivalent amounts of AlN to promote the consolidation of the suspensions. Ceramics consolidated via GC exhibited higher green (three-point bend) strengths (∼17 MPa) than those consolidated by other techniques. Further, these ceramics also exhibited superior fracture toughness and flexural strength properties after sintering for 1 h at 1600°C in comparison with those consolidated by other techniques, including conventional die pressing (FG).  相似文献   

20.
Boundary migration under an electric field was investigated for pure, TiO2-doped, and Li2O-doped Al2O3 specimens. Boundary migration rates in TiO2-doped and Li2O-doped Al2O3 specimens were much faster compared with that of pure Al2O3. In all specimens, the migration rate was observed to depend on the applied bias direction. Compared with pure Al2O3, the dependence of boundary migration on bias direction became more pronounced in TiO2-doped Al2O3 but less pronounced in Li2O-doped Al2O3. The results were explained in terms of the variation of grain sizes, mobility, and electrostatic potential of boundaries because of doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号