首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用少量乙二胺作为还原剂,在水热条件下制备了还原氧化石墨烯/石墨烯量子点复合材料(rGO/GQDs)。由扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、红外光谱对材料的形貌和结构进行了表征,并研究了材料的电化学性能。结果表明:复合材料具有三维多孔结构和良好的电化学性能,在0. 3 A/g的电流密度下,复合材料的比电容达到了226. 54 F/g。在10 A/g电流密度下,经过10000次充放电循环后其比电容值仍为初始值的91. 4%。  相似文献   

2.
采用共沉淀方法并结合热处理技术制备了CoNi O_(2)/Ti_(3)C_(2)Tx复合材料。使用扫描电子显微镜、X射线衍射、X射线光电子能谱、氮气吸脱附测试、循环伏安法、恒流充放电法和电化学阻抗测试对所制备样品进行表征。结果表明:CoNiO_(2)/Ti_(3)C_(2)Tx质量比为30:1的复合材料具有最佳的电化学性能,在1 A/g的电流密度下具有389 F/g的比电容,约为Ti_(3)C_(2)Tx比电容的6倍;当电流密度为20 A/g时,其比电容为309 F/g;在电流密度为10 A/g时,经过1500次充放电循环后,电容保持率为82%。  相似文献   

3.
以乙醇为溶剂,用水热合成法制备了钴锰铝层状双氢氧化物(CoMnAl-LDH)。通过X射线衍射(XRD),扫描电子显微镜(SEM)和电化学工作站等方法对所制备LDHs的微观结构和电化学性能进行了研究。结果表明,水热合成过程中使用乙醇为溶剂有利于LDH形成三维立体花状结构,其电化学比容量在1A/g的电流密度下达到662 F/g,远高于水溶剂合成的样品(143 F/g),且在10 A/g的大电流密度下仍然保持比水溶剂合成样品更高的比容量。  相似文献   

4.
采用共沉淀方法并结合热处理技术制备了CoNi O_2/Ti_3C_2T_x复合材料。使用扫描电子显微镜、X射线衍射、X射线光电子能谱、氮气吸脱附测试、循环伏安法、恒流充放电法和电化学阻抗测试对所制备样品进行表征。结果表明:CoNiO_2/Ti_3C_2T_x质量比为30:1的复合材料具有最佳的电化学性能,在1 A/g的电流密度下具有389 F/g的比电容,约为Ti_3C_2T_x比电容的6倍;当电流密度为20 A/g时,其比电容为309 F/g;在电流密度为10 A/g时,经过1 500次充放电循环后,电容保持率为82%。  相似文献   

5.
通过一步电化学沉积法在泡沫镍(Ni foam,NF)集流体上制备了3D硫化镍(Ni3S2)材料,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)等对所制备材料的物化结构和形貌进行了表征,并采用循环伏安法(CV)、恒流充放电法(GCD)研究了其作为超级电容器电极的电化学性能。测试结果表明,制备的Ni3S2/NF-10材料具有相互连接的3D结构,表现出优异的赝电容性能。在1 A/g电流密度下,比电容高达2850 F/g。将电流密度提高到10 A/g,该材料比电容仍能达到1972 F/g,说明其具有优异的倍率性能。测试结果表明所制备的Ni3S2材料有望应用于电化学储能领域。  相似文献   

6.
本文以玫瑰花瓣为碳源,通过高温煅烧,获得三维多孔碳骨架材料。以水热法制备了CoO/三维玫瑰花碳骨架复合材料。材料的形貌和结构通过扫描电镜(SEM)、能谱仪(EDS)、红外光谱(FT-IR)来表征。采用循环伏安、恒流充放电来测试材料的电化学性能。实验结果显示,制备的复合材料具有分层、内部相通的孔结构;电化学测试表明复合材料有优异的电化学性能,当电流密度为20 m A/g时,比容量为328 F/g。  相似文献   

7.
为提高聚吡咯电极材料电化学性能,研制出一种普鲁士蓝(PB)镶嵌聚吡咯(PPy)薄膜电化学电容器电极。采用化学沉淀法结合气相聚合(VPP)法将同步合成的PB引入PPy薄膜中,制备了自支撑聚吡咯/普鲁士蓝(PPy/PB)复合电极材料。利用扫描电子显微镜、拉曼光谱、X射线粉末衍射技术等对复合材料的形貌及结构进行表征。在三电极体系和对称超级电容器中研究PPy/PB复合材料的电化学表现,研究结果表明,PPy/PB复合材料组装的超级电容器比电容高达447.6 F/g。不同电流密度下充放电性能研究表明,电流密度从1.0 A/g增大到10.0 A/g时,PPy/PB比容量保持率为70.8%,具有优异的倍率性能。通过4 000次恒流充放电后PPy/PB电容保持率为76.9%,高于纯PPy电极材料,显示出较好的电容性能。  相似文献   

8.
王丽  夏友付  沈悦  李涛 《现代化工》2023,(6):172-175
以柠檬酸和组氨酸为碳源构筑了组氨酸功能化石墨烯量子点@氧化镍(His-GQD@NiO)复合材料。利用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及恒流充放电仪等对复合材料的结构、形貌和电化学性能进行表征与分析。结果表明,该复合材料表现出优异的电化学性能,在电流密度为1 A/g时,比电容达到542 F/g,并且具有良好的循环稳定性(5 000次循环后电容保持率为94.8%)。良好的电化学性能归因于材料优异的导电性、结构的稳定性以及高效的电解液传输通道。  相似文献   

9.
通过共沉淀法制备钴锰层状双金属氢氧化物(CoMn-LDH)。在制备过程中,考察了钴锰摩尔比、碱浓度、晶化时间对材料形貌与电化学性能的影响。结果表明,当钴锰摩尔比为2∶1、碱浓度为2 mol/L、晶化时间为21 h时,在1 A/g的电流密度下,CoMn-LDH的比容量为952 F/g;经过1 000次充放电,比容量保持在92. 7%;电流密度从0. 5 A/g增加至10 A/g,比容量保持在79. 8%。  相似文献   

10.
以木耳制备的均匀溶液为碳源,加入ZIF-67前驱体,通过水热合成和高温煅烧制备氮硫共掺杂的木耳碳与硫化钴多孔片层复合材料(CoS/NSAC)。实验结果表明,该材料具有大的比表面积和高导电性,电化学性能良好。CoS/NSAC在电流密度为0.5 A/g时比容量达到484.8 F/g,在20 A/g高电流密度下循环5 000次容量保持率为78.8%。用该材料组装的非对称超级电容器具有优异的电化学性能,在0.6 A/g电流密度下比容量为154 F/g。当功率密度为362.3 W/kg时,能量密度为7.4 W·h/kg,经过1 800次循环容量保持率为81.95%。  相似文献   

11.
冯艳艳  李彦杰  杨文  牛潇迪 《化工进展》2020,39(7):2734-2741
以葡萄糖为碳源,采用水热炭化法制备碳球,然后以氯化钴和氯化镍为钴源和镍源,六次甲基四胺为沉淀剂,采用水热法和高温处理合成一种核壳结构的碳球@钴镍金属氧化物纳米复合材料,并研究其作为超级电容器电极材料的储能性能。借助X射线衍射、扫描电镜和低温氮气吸附/脱附等对材料的形貌和结构进行表征。采用循环伏安、恒电流充放电及交流阻抗等对材料的电化学性能进行研究。结果表明:碳球的加入能有效改善钴镍金属氧化物的分散性,同时降低材料的电子转移阻力,进而提高其电化学性能。当电流密度为1A/g时,所得碳球@钴镍金属氧化物核壳型复合材料的比电容为984.8F/g;当电流密度增大10倍(10A/g)时,仍保留86.3%的初始比电容值。当电流密度为15A/g时,经过2000次恒电流充放电后复合材料的比电容量保持率为94.6%,体现出较好的循环稳定性能。  相似文献   

12.
用简单的水热反应合成一种形貌独特的玫瑰花状的N-CNTs/MoS2纳米复合材料.通过一系列的表征手段和化学工作站分析该材料的组成和结构并得出其电化学性能.结果表明:该材料作为电极材料时,在电流密度为1 A/g时,比电容为642 F/g;在电流密度为10 A/g时,比电容为280 F/g,且在5000次循环之后比电容仍能保持在85.8%,而MoS2材料在同等条件下仅有56.2%的电容保持率,因此N-CNTs/MoS2纳米复合材料具有优良的电化学性能.  相似文献   

13.
采用六水合硝酸镍为镍源,通过一步水热法制备了Ni(OH)_2/活性碳纤维(ACF)复合材料,并对材料的结构和电化学性能进行研究。结果表明:Ni(OH)_2主要以纳米片结构生长在ACF表面,当金属离子Ni~(2+)浓度为10 mmol/L时,纳米片在ACF表面形貌规整、分散均匀,厚度约为20 nm,且纳米片之间具有丰富的孔隙结构;复合材料其相对ACF(1043 m~2/g)具有更高的比表面积,达到了1352 m~2/g;电化学性能测试表明:复合材料在电流密度0.5 A/g时的比电容高达905 F/g,在电流密度5 A/g时的比电容仍有630 F/g,通过循环充放电1000次,其比电容保持率仍有85.7%,表明复合材料具有较好的倍率性和循环稳定性。  相似文献   

14.
彭得群 《化工进展》2022,41(1):343-349
采用原位生长法,在泡沫镍(nickel foam,NF)基底上制备具有三维互连结构的CuGeO3纳米片,直接将CuGeO3/NF电极材料用作锂离子电池电极,省去了涂覆法制备粉末电极所需的高分子黏结剂。利用X射线衍射仪、X射线光电子能谱、扫描电镜和透射电镜分析了电极材料的结构和形貌,测试了CuGeO3/NF和CuGeO3两种负极材料的电化学性能。结果表明,与传统涂覆法制备的CuGeO3粉末电极相比,CuGeO3/NF无黏结剂型电极具有更好的循环性能和倍率性能。在0.2A/g电流密度下500次循环后,可逆比容量为972mA·h/g,容量保持率94.1%;在电流密度为1A/g时,可逆比容量为578mA·h/g,电流密度恢复至0.1A/g时,可逆比容量升高至936mA·h/g。CuGeO3/NF电极材料良好的电化学性能归因于泡沫镍的三维导电网络结构。此外,泡沫镍负载CuGeO3纳米片加快了嵌锂/脱锂过程中电子和离子的传输,缓解了活性物质的体积膨胀。  相似文献   

15.
采用复合溶胶–凝胶法结合后续热处理,制备了具有包埋结构的氧化亚硅/碳(SiOx/C)复合负极材料。扫描电子显微镜分析结果表明:氧化亚硅纳米颗粒嵌入在无定形碳中。电化学性能测试表明:SiOx/C复合材料具有较高的比容量、优异的循环稳定性和倍率性能。材料在0.1 A/g的电流密度下100次循环后的可逆比容量为710 m A·h/g,容量几乎无衰减;在1.6 A/g的电流密度下,可逆比容量为380 m A·h/g。优异的电化学性能是由于材料的包埋结构能有效地缓冲SiOx充放电过程中的体积膨胀,保证材料的结构完整性和电化学循环稳定性。  相似文献   

16.
用硼氢化钠(NaBH_4)还原氧化石墨烯得到还原石墨烯(rGO)分散液,rGO分散液与苯胺在酸性条件下原位聚合得到高比表面积三维有序结构的聚苯胺/石墨烯纳米复合材料。由场发射扫描电镜(FESEM)、透射电镜(TEM)、X射线光电子能谱(XPS)和X射线衍射(XRD)对其表面形貌和结构进行表征。结果表明:复合材料的比表面积高达136.9 m~2/g,高于纯聚苯胺的比表面积(32.71 m~2/g);直径10~20 nm的聚苯胺纳米棒均匀地垂直生长在石墨烯表面。在0.5 A/g的电流密度下,复合材料比电容达到358 F/g,大于石墨烯和聚苯胺的比电容;当充放电电流密度由0.5 A/g增加到10 A/g时,电容保留率达74.3%,表现出增强的倍率性能;在10 A/g高电流密度下,经过500次的充放电循环后容量保持率达到83.7%。  相似文献   

17.
采用螯合法制备了RGO/δ-MnO_2复合材料,并用X射线粉末衍射(XRD)、低压氮气吸附脱附(BET)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)、热重(TGA)对其结构和物相进行表征。采用循环伏安测试(CV)、恒电流充放电(GCD)以及循环测试对所制材料电化学储能进行测试。结果表明RGO/δ-MnO_2复合材料比纯石墨烯和纯δ-MnO_2具有更优异的电化学性能。当电流密度为1 A·g-1时,RGO/δ-MnO_2复合材料的比电容可达322.6 F·g-1,比纯δ-MnO_2电极材料高234.2 F·g-1,比纯石墨烯高212.1F·g-1。当电流密度放大10倍后,RGO/δ-MnO_2复合材料的比电容保留率为79.1%。在1000次恒流充放电测试后,比电容为252 F·g-1(99.6%),说明该方法制备的RGO/δ-MnO_2复合材料是一种有应用前景的超级电容器电极材料。  相似文献   

18.
本研究以MAXene(Ti_3AlC_2)刻蚀和剥离得到的MXene(Ti_3C_2)为基底,在酸性条件下将苯胺单体负载到MXene上制备MXene/PANI复合材料。利用场发射扫描电镜(SEM)、X射线衍射(XRD)对材料进行表征,在1 M H_2SO_4电解液中,对合成的复合材料进行电化学性能测试。结果表明,该种方法可成功制备MXene/PANI复合材料,在电流密度为0.5 A·g~(-1)时,复合材料比电容达到256.6 F·g~(-1),优异的电化学性能使得该材料可作为一种理想的超级电容器电极材料。  相似文献   

19.
采用一步水热法,在乙二胺的辅助下,制备了硫化钴/石墨烯气凝胶(CoS/GA)复合材料。通过X射线衍射法(XRD)、扫描电镜(SEM)、电化学性能测试对材料进行了表征和测试。结果表明:制备的材料晶型规整,30~100 nm的CoS粒子均匀地分布在石墨烯气凝胶上。用作超级电容器时,在电流密度0.5 A/g时,CoS/GA复合材料比电容值达574 F/g,是纯CoS的1.4倍;充放电循环1 000次后,比电容保持率为94.4%。硫化钴/石墨烯复合材料的电化学性能较好,具有较大的比电容和较好的循环稳定性,是一种可用于超级电容器的较有潜力的电极材料。  相似文献   

20.
利用造纸废料生物质衍生物木质素磺酸钠作为碳源,邻苯二胺为氮源,经低温预处理后活化制备了氮掺杂多孔炭(NPC)。采用XRD、XPS和低温N_2脱/吸附技术对其结构、比表面积和孔径分布进行了分析。通过研究投料比、活化温度对材料电化学性能的影响可知,当木质素磺酸钠与邻苯二胺的质量比为5∶3,焙烧温度为750℃时,获得的氮掺杂多孔炭(NPC-750)具有最佳的电化学性能。在电流密度为1 A/g时,NPC-750的比电容为226 F/g,电流密度升高到20 A/g时,比电容仍有178 F/g,表明该电极具有较好的倍率性能(78.8%)。另外,在充放电流密度为10 A/g下循环1000次后,其容量保持率高达98.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号