首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
烷基化硫转移反应脱硫是一种非加氧脱硫方法,该法首先利用FCC汽油中的烯烃与噻吩类硫化物进行烷基化反应,形成高沸点的烷基噻吩类硫化物,然后通过蒸馏分离达到脱硫目的.实验分别在FCC汽油和模拟汽油中考察了大孔磺酸树脂Amberlyst 35催化汽油烷基化硫转移的反应活性,并研究了反应温度对反应过程的影响.结果表明 Amberlyst 35树脂可有效催化烷基化硫转移反应的发生,80~140℃温度范围内,在剂油质量比为1:11、反应时间为1 h的条件下,对FCC汽油中主要硫化物的转化率均达到90%以上,可以满足催化精馏烷基化脱硫操作的需要.转化了的烯烃主要发生了低聚反应,随反应温度的升高,烯烃二聚的选择性降低,容易生成更多高沸点胶质,会降低催化剂的稳定性和产品的收率.  相似文献   

2.
FCC汽油中的噻吩类硫化物烷基化硫转移反应脱硫   总被引:5,自引:0,他引:5  
以模型硫化物噻吩与异戊烯的烷基化反应为探针,研究了反应温度、反应压力以及原料中二烯烃杂质对三氯化铝固载改性的磺酸树脂催化剂AlCl3 CT175烷基化性能的影响. 结果表明,在反应温度为100~110℃、反应压力低于3.0 MPa条件下,原料中的二烯烃明显影响催化剂的活性稳定性,这与二烯烃在催化剂表面发生聚合反应结焦有关. 当反应压力高于3.0 MPa时,AlCl3 CT175催化剂催化模型硫化物噻吩与异戊烯的烷基化反应不仅具有很高的活性,噻吩硫化物均接近于完全转化,而且具有较理想的活性稳定性. 以噻吩的甲基取代衍生物相对集中的FCC汽油60~150℃馏分段为原料,在110℃, 3.0 MPa,质量空速2.33 h 1的反应条件下,考察了该馏分段中的噻吩类硫化物与烯烃在AlCl3 CT175催化剂上烷基化反应硫转移脱硫效果,结果表明占总硫98.27%的硫化物参与了烷基化硫转移反应,且该馏分段中的二烯烃含量也得到有效的降低.  相似文献   

3.
C6~C8烃类转化及芳构化反应机理的研究   总被引:1,自引:0,他引:1  
采用正己烷、正辛烷、环己烷、异辛烷、1-己烯和1-辛烯六种模型化合物,使用微型固定床反应器,采用FCC汽油芳构化、烷基化降烯烃OTA技术,考察烃类模型化合物在FDO催化剂上的反应活性和转化途径,进一步探讨了烃类芳构化反应机理。  相似文献   

4.
考察了NKC-9,CT-175,D005-II和LSI-600四种不同磺酸树脂在噻吩类硫化物和烯烃烷基化反应中的催化性能.结果表明,NKC-9有优于其它树脂的烷基化催化性能,其合适的反应条件为常压、90 ℃和料剂体积比15∶1.在此条件下,硫的转化率高于92.32%,NKC-9对FCC汽油中硫醇向高沸点产物转化也有很好的催化作用.考察了NKC-9的选择性和稳定性,发现它适合催化噻吩类硫化物与C4和C5烯烃的烷基化反应,稳定性好.  相似文献   

5.
选择以噻吩的甲基取代衍生物(包括2-甲基噻吩、3-甲基噻吩及2,5-二甲基噻吩)与异丁烯的烷基化反应为模型反应,考察了经三氯化铝气相固载法改性的CT175树脂催化剂催化噻吩的甲基取代衍生物与烯烃的烷基化反应性能. 研究结果表明,负载AlCl3的CT175树脂催化剂对催化2-甲基噻吩、3-甲基噻吩及2,5-二甲基噻吩与异丁烯的烷基化硫转移反应均具有很高的活性,在80℃、常压、异丁烯(与氮气按摩尔比1:1配制的混合气)流量5.0 mL/min、液体(含模型硫化物2-甲基噻吩、3-甲基噻吩及2,5-二甲基噻吩的浓度分别为2033, 2045, 1543 mg/g的苯溶液)质量空速为2.5 h-1的条件下,上述5种模型硫化物均接近于完全转化. 对催化剂的活性稳定性进行了为期30 d的连续考察,结果表明,3种模型硫化物的烷基化转化率均高于99%,且催化剂活性未见下降趋势.  相似文献   

6.
考察了催化裂化(FCC)汽油中硫化物和模型硫化物在OTA(Olefin To Aromatics)催化剂上的催化转化性能.结果表明FCC汽油硫化物总脱硫率为86.3 %,其中,硫醚和四氢噻吩的转化率都达到100 %,硫醇硫转化率96.6 %,噻吩硫转化率78.8 %,烷基噻吩转化率85.8 %,苯并噻吩转化率81.4 %.3-甲基噻吩在OTA催化剂上的转化产物中含有小分子(噻吩),异构硫化物(2-甲基噻吩),以及大分子异构硫化物(如2,5-二甲基噻吩、2,4-二甲基噻吩和2,3-二甲基噻吩).烷基噻吩和苯并噻吩硫化物在OTA催化剂上脱硫反应网络一方面含有直接加氢脱硫反应,另一方面经历歧化、异构化和裂解等反应.  相似文献   

7.
FCC汽油烷基化脱硫研究   总被引:1,自引:0,他引:1  
分别采用大孔磺酸树脂NKC-9及FCC汽油烷基化催化剂SW—I对FCC汽油进行静态及动态烷基化脱硫研究。结果表明,SW—I烷基化脱硫操作条件更为缓和,其催化活性及寿命均优于NKC-9树脂。在反应温度60℃、反应时间60 min和剂油质量比1:100的条件下,SW—I烷基化脱硫汽油硫含量降至181.7μg·g~(-1),脱硫率63.49%,收率85.30%。SW—I对不同硫含量的FCC汽油均具有一定的脱硫效果,脱硫适应性较强。通过对汽油烷基化反应前后硫化物的分布分析发现,烷基化反应使FCC汽油中的大部分噻吩类化合物反应生成沸点更高的产物,通过蒸馏分离将其除去,达到脱硫目的。  相似文献   

8.
为了合理利用炼厂C5馏份中的烷烃与烯烃资源,同时也为了开拓TAMA(甲基叔戊基醚)的生产原料异戊烯(主要是2-甲基-1-丁烯和2-甲基-2-丁烯)的新来源,对石油炼制中生成的C5馏份进行全组分异构烯烃化处理获取异戊烯已成为近年来众人关注的课题。本文对C5馏份全组分异构烯烃化处理中必将遇到的正戊烷异构制异戊烷、异戊烷脱氢制异戊烯和正戊烯异构制异戊烯等几个主要过程的催化反应原理、催化剂研究状况及工艺过程开发情况进行了全面的分析与评述。  相似文献   

9.
在简要介绍烷基化脱硫原理基础上,综述了近年来对FCC汽油中噻吩和烷基噻吩等小分子噻吩类硫化合物烷基化反应催化剂的研究进展,着重从分子筛、负载型杂多酸及固体磷酸、离子液体和离子交换树脂等方面来介绍催化裂化汽油烷基化脱硫催化剂的研究应用,最后对汽油烷基化脱硫催化剂的研究重点进行了展望。  相似文献   

10.
以正己烷、环己烷、1-己烯3种烃类和噻吩、3-甲基噻吩和苯并噻吩三种硫化物为模型化合物,考察了烃及含硫模型化合物在ZSM-5分子筛催化剂上的催化转化性能。结果表明,在催化剂作用下,烃类模型化合物都具有芳构化和异构化转化性能,芳构化率高低顺序为:烯烃〉环烷烃〉正构烷烃,异构化率高低顺序反之;高温、低压有利于芳构化反应,低温、高压有利于异构化反应;模型硫化物都较易被脱硫,其加氢脱硫活性高低顺序为:噻吩〉烷基取代噻吩〉苯并噻吩,高温、高压有利于他们的脱硫。  相似文献   

11.
大孔磺酸树脂固载AlCl3用于噻吩与烯烃的烷基化反应   总被引:5,自引:2,他引:5  
大孔磺酸树脂固载AlCl3是提高树脂催化剂酸强度及其烷基化活性的有效方法,本工作以NKC9, CT175两种磺酸树脂催化剂为载体,采用AlCl3气相固载法分别于不同固载温度及固载时间条件下制得AlCl3–NKC9, AlCl3–CT175催化剂,并对其用于噻吩与异丁烯、异戊烯的烷基化反应活性进行了考察. 结果表明:在固载时间为10~25 h、固载温度为110~120℃条件下,所制得的催化剂在常压、温度60℃、原料(含4300 mg/L噻吩的苯溶液)质量空速为7.5 h–1的反应条件下具有很高的噻吩烷基化活性(噻吩转化率达95%),且固载AlCl3后的树脂催化剂活性稳定性较固载前有较大程度提高.  相似文献   

12.
李锋  宋华  刘全夫 《辽宁化工》2006,35(10):579-582
介绍了降低催化裂化(FCC)汽油烯烃含量反应的基本原理,分析了降低FCC汽油烯烃含量的方法。针对我国FCC汽油中烯烃含量高及汽油调和组分中FCC汽油所占比例过大,导致成品汽油中烯烃含量高的现象,可调整优化FCC技术,并采用新型降烯烃催化剂。要从根本上解决问题,必需对汽油生产结构进行调整,多建催化重整、烷基化和异构化装置,减少成品汽油中FCC汽油的比例。  相似文献   

13.
针对国VI汽油标准大幅度降烯烃的需要及乙醇汽油对有机含氧化合物含量的严格要求,从分子炼油角度出发,按照烯烃碳数C_4、C_5~C_6、C_5~C_8的顺序分别介绍并分析催化裂化(FCC)汽油降烯烃后处理技术,包括MTBE生产、烷基化、醚化、异构化/芳构化工艺发展状况、优缺点与应用局限。由于乙醇汽油的推广,MTBE生产技术与轻汽油醚化技术将面临停产的困境与改造的挑战,而烷基化、异构化/芳构化等生产高辛烷值汽油组分的技术是更具潜力的FCC汽油降烯烃技术,将得到大力发展。此外,总结常用工业催化剂及其改性研究,并简述存在问题与发展方向,提出汽油组分比例优化、MTBE装置改造等建议与展望,为FCC汽油降烯烃工艺技术路线选择提供借鉴。  相似文献   

14.
筛选了4种商业改性苯乙烯类耐高温磺酸树脂,考察其在异戊烯低聚反应中的催化性能。通过N_2吸脱附及离子交换滴定测试各磺酸树脂的比表面积、孔结构及酸量。结果表明,高表面积、大孔径及高酸量有利于异戊烯的低聚反应。在80℃、2 MPa反应条件下,4种磺酸树脂催化异戊烯反应均主要生成二聚产物;其中DA-330催化剂具有较高的异戊烯转化率和二聚产物收率,且稳定性较好,重复使用5次其催化活性没有明显下降。  相似文献   

15.
本文介绍了催化裂化汽油戊烯的分离方法——硫酸萃取吸收法、醚化分离法和烷基酚烷基化法;同时,介绍了其利用途径,其中包括1-戊烯、2-戊烯、2-甲基-1-丁烯和2-甲基-2-丁烯的利用,并指出了其分离利用的经济意义。  相似文献   

16.
以炼厂FCC裂解气(混合C_4)为原料,对磺酸树脂DH-2催化剂催化C4烯烃选择性叠合进行工艺条件等方面的评价。结果表明,反应温度降低、空速增大和催化剂酸量降低均导致异丁烯和1-丁烯转化率下降,C_8烯烃(C_8~=)选择性升高,C_8~=中三甲基戊烯(TMP~=)的质量分数增多,二甲基己烯(DMH~=)的质量分数减少。另外,添加乙醇抑制剂可大大降低1-丁烯转化率,提高C_8~=选择性,在50℃、2 h~(-1)、乙醇与异丁烯物质的量比(简称醇烯物质的量比)为50%的条件下,异丁烯转化率为75. 63%,1-丁烯转化率为6. 48%,C_8~=选择性为88. 64%。  相似文献   

17.
以异戊烯醛和异戊烯醇为原料,经异戊烯酸催化缩醛化反应得到3-甲基-2-丁烯醛二异戊烯基缩醛,再经磷酸催化消除反应得到顺/反-异戊烯基-3-甲基丁二烯醚.对缩醛化反应条件和消除反应条件等工艺条件进行了详细研究.结果表明,以0.3%异戊烯酸为酸性催化剂,70~75℃共沸脱水反应8 h,异戊烯醛的单程转化率达到63%~64%...  相似文献   

18.
采用"BA试验"方法进行大孔磺酸树脂催化剂催化FCC汽油烷基化脱硫反应的加速寿命试验考察;通过BET比表面积、非金属元素分析和FT-IR等分析技术研究烷基化脱硫催化剂失活的原因,并对失活催化剂浸取物进行分析。结果表明,经过多次深处理后,催化剂活性基本丧失。在反应过程中,烯烃低聚和芳烃烷基化等副反应生成的高分子有机副产物覆盖催化剂的活性中心以及碱性氮化物中和活性基团H+是造成催化剂活性降低的原因,并且高分子有机副产物覆盖催化剂的活性中心为主要原因。覆盖催化剂或堵塞孔道的物质主要由大量长链烷烃、少量长链烯烃和芳烃物等有机物组成。  相似文献   

19.
烷基化工艺可将碳四原料中烯烃和异丁烷生成高辛烷值汽油组分,烷基化油不含氧、烯烃、芳烃,随着国VI汽油质量标准的发布,烷基化工艺受到越来越多重视。目前已工业化烷基化技术,对原料要求不尽相同。原料预处理包括选择性加氢饱和二烯烃、1-丁烯异构、氧化物等杂质脱除等。对烷基化装置原料预处理部分做了介绍。  相似文献   

20.
LGO系列降低汽油烯烃含量催化剂的开发与应用   总被引:5,自引:0,他引:5  
降低FCC汽油烯烃含量的关键是要增加FCC反应中的氢转移能力,以饱和汽油中的烯烃。由石油化工科学研究院和兰州石化公司催化剂厂合作开发的LGO-20、LGO-21系列降烯烃重油裂化催化剂和LGO-A降烯烃助剂,适用于降低汽油烯烃含量,可根据装置特点及目的产品要求灵活调变活性组分及其配比,并通过不同的基质改性技术生产具有针对性的产品,该系列催化剂普遍具有显著的降低催化汽油烯烃的性能,在装置维持掺渣量较高(约65%~70%)的条件下,通过调整工艺操作条件,可以将催化汽油中烯烃含量降低10~15个百分点,使汽油烯烃控制在40vol%左右,RON在90以上。LGO- 21更具有提高柴油产率的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号