首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the effects of fission gas flow and diffusion in the fuel-cladding gap on fuel rod thermal and mechanical behaviors in light water reactor (LWR) fuel rods under operational transient conditions, computer sub-programs which can calculate the gas flow and diffusion have been developed and integrated into the LWR fuel rod performance code BEAF. This integrated code also calculates transient temperature distribution in the fuel-pellet and cladding.The integrated code was applied to an analysis of Inter Ramp Project data, which showed that by taking into account the gas flow and diffusion effects, the calculated cladding damage indices predicted for the failed rods in the ramp test were consistent with iodine-SCC (Stress Corrosion Cracking) failure conditions which were obtained from out-of-reactor pressurized tube experiments with irradiated Zircaloy claddings. This consistency was not seen if the gas flow and diffusion effects were neglected. Evaluation were also made for the BWR 8 × 8 RJ fuel rod temperatures under power ramp conditions.  相似文献   

2.
Fuel assembly design study for a reactor with supercritical water   总被引:3,自引:1,他引:3  
The European concept of the High Performance Light Water Reactor (HPLWR) differs from current light water reactors in a higher system pressure beyond the critical point of water, as well as a higher heat-up of the coolant within the core and thus higher core outlet temperatures, leading to a significant increase in turbine power and thermal efficiency of the power plant. The motivation to develop a novel fuel assembly for the HPLWR is caused by the high variation of coolant density in the core by more than a factor of seven. A systematic design study shows that a square fuel assembly with two rows of fuel rods and a central moderator box is best to minimize the structural material, to optimize the moderator to fuel ratio and to reduce differences of fuel rod power. Using neutronic and thermal-hydraulic analyses, a detailed mechanical design of a fuel assembly of the HPLWR has been worked out. Moreover, concepts for the head piece, the foot piece, the steam plenum and the lower mixing plenum, including the lower core plate, have been developed to account for the individual flow paths of this reactor. These allow a leak-tight counter current flow of moderator water and coolant as well as uniform mixing of different mass flows. The assembly design concept can be used as a general key component for any advanced core design of this reactor.  相似文献   

3.
Burnup calculations have been performed on a mini fuel assembly containing 21 fuel rods and four water holes at the corners. The fuel rod positions were filled with 4% enriched UO2 fuel and with either reactor grade or weapons grade plutonium mixed in an inert matrix. The ratio between the UO2 and the IMF rods was varied to investigate the influence of the UO2 fuel on the dynamics of the assembly. From a simple reactor model with one delayed neutron group and first-order fuel and temperature feedback mechanisms, the linear transfer function from reactivity to reactor power was calculated that was subsequently used in a root-locus analysis. From this, it is concluded that only 20% of the fuel rods need to be made of UO2 to have a fuel that is linearly stable up to 1000 days of irradiation.  相似文献   

4.
During operation of nuclear power reactors, reactivity initiated accidents can take place such as a control rod drop. If this occurs, the reactivity increases significantly and leads to an enhancement in power, fuel temperature and damage of reactor eventually. Exact assessment of these accidents depends on the hydrodynamic information. In this research, it is tried to simulate the unsteady flow field around the control rod for a pressurized water reactor power plant. In order to simulate the flow field around the control rod inside the guide tube, averaged Navier–Stokes equations accompanied by the layering dynamic mesh strategy have been used. The information exchange between the two computational stationary and moving grids, the computational grid around the control rod and the grid next to the guide tube, has been taken place through the interface. It was concluded that the time duration of control rod to reach the bottom of the core depends on the leakage. It was also observed that the velocity and acceleration of the control rod would be reduced by decreasing leakage flow rate and in certain leakages, the acceleration of the control rod approaches zero due to equilibrium conditions. During this research, a correlation based on the achieved data was proposed which would provide useful information on the relation between the leakage and the time for control rod to reach the bottom of the core.  相似文献   

5.
The supercritical-water-cooled power reactor (SCPR) is expected to reduce power costs compared with those of current LWRs because of its high thermal efficiency and simple reactor system. The high thermal efficiency is obtained by supercritical pressure water cooling. The fuel cladding surface temperature increases locally due to a synergistic effect from the increased coolant temperature, the expanded flow deflection due to coolant density change and the decreased heat transfer coefficient, if the coolant flow distribution is non-uniform in the fuel assembly. Therefore, the SCPR fuel assembly is designed using a subchannel analysis code based on the SILFEED code for BWRs.

The SCPR fuel assembly has many square-shaped water rods. The fuel rods are arranged around these water rods. The fuel rod pitch and diameter are 11.2 mm and 10.2 mm, respectively. Since coolant flow distribution in the fuel assembly strongly depends on the gap width between the fuel rod and the water rod, the proper gap width is examined. Subchannel analysis shows that the coolant flow distribution becomes uniform when the gap width is 1.0 mm. The maximum fuel cladding surface temperature is lower than 600°C and the temperature margin of the fuel cladding is increased in the design.  相似文献   

6.
The Doppler limited power excursion characteristics of a light water reactor and the shutdown mechanism by scram were analyzed on the Hitachi Training Reactor (HTR). For the purpose of the pulse operation tests, modifications were applied to the HTR to provide pulsing capability; a pulse rod was added, together with a back up device for shutdown, and provision of three instrumented fuel assemblies, equipped with thermocouples; the Al-clad fuel rods were replaced by stainless steel clad rods.

About 100 runs of pulse operation tests were performed in fullest security with reactivity insertions ranging up to 1.0 % Δk/k, in which last case the peak power reached 38 MW, with a reactor period of 29 msec.  相似文献   

7.
A supercritical-pressure light water cooled and moderated reactor (Super LWR) with a single-pass flow scheme is developed for simplifying upper core structures. Both coolant in the fuel channels and the water rods flow upward and are mixed in the upper plenum. It eliminates the moderator guide/distribution tubes in the upper core that were used in the previous Super LWR design adopting two-pass coolant flow scheme. This core design adopts a four-batch fuel management scheme and an out–in fuel loading pattern. One hundred and twenty-one fuel assemblies with an active height of 3.7 m are included. The flow rate fraction for water rods is 3.5%, and the thermal insulator is used to keep the moderator temperature below pseudocritical temperature. The equilibrium core is analyzed by using neutronic and thermal-hydraulic coupled calculation. The results show that the maximum cladding surface temperature (MCST) is limited to 485 °C with the average outlet temperature of 400 °C. The inherent safety is fulfilled by the positive water density reactivity coefficient and sufficient shutdown margin. On the other hand, the investigation of average outlet coolant temperature varying with MCST is carried out to explore the maximum outlet temperature by employing current MCST criterion and single-pass core design. The average outlet temperature increases with the MCST, and it achieves 465 °C with the thermal efficiency of 43.1% at the MCST criterion of 650 °C. The structure inside the reactor pressure vessel is simplified as a pressurized water reactor.  相似文献   

8.
压水堆燃料棒工作在复杂的辐照、热和力学环境中,对其性能进行定量评估涉及多种复杂的物理现象。目前常用的燃料性能分析程序一般对结构采用简化的轴对称假设,对辐照肿胀、辐照蠕变和高温蠕变等物理现象以及辐照-热-力等物理场之间的耦合考虑并不充分。基于ABAQUS有限元求解框架,开发了压水堆燃料棒三维热-力学性能的模拟程序,利用程序对压水堆燃料棒进行了稳态分析,以及升功率和反应性引入事故两种瞬态分析。结果表明:辐照引起燃料致密化和肿胀对燃料温度变化有重要影响;芯块应变增加主要是由裂变产物肿胀引起的;芯块几何结构导致包壳应力集中发生在芯块间的交界面处;燃料棒功率的急剧变化会加快芯块表面破裂的进程;反应性引入事故会导致芯块从内部开始破裂,并会引发芯块-包壳的接触。  相似文献   

9.
Results obtained in the pulse irradiation tests performed on segmented fuel elements in the Romanian Annular Core Pulse Reactor (ACPR) are discussed below. Tests included the effects of initial element internal pressure and a wide range of energy deposition on the fuel element behavior. All tests were conducted in stagnant water at room temperature and atmospheric pressure inside the capsule. The fuel elements were instrumented with thermocouples for cladding surface temperature measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during the tests. The fuel elements were subjected to total energy depositions from 70 to 265 cal g−1 UO2. Cladding failure mechanism and the failure threshold have been established. The fuel failure mechanism is a burst type and is very similar to LOCA failure mechanism even though the rate energy deposition is higher in the ACPR tests. At higher energy deposition brittle cladding fracture near endcap weld region can be produced. The failure threshold is situated between 190 and 200 cal g−1 UO2 for standard fuel rod (0.2–0.3 MPa internal pressure) and less than 160 cal g−1 UO2 for pressurized fuel rods (internal pressure between 1 and 3.0 MPa). Pre-pressurization could be an important factor to control the failure threshold energy. The experimental program is still in progress and new experiments are foreseen to be performed in the following period.  相似文献   

10.
New concept of a passive-safety reactor “KAMADO” has a negligible possibility of core melting and flexibility of total reactor power. The reactor core of KAMADO consists of fuel elements of graphite blocks, which have UO2 fuel rods and cooling water holes. These fuel elements are located in a reactor water pool of atmospheric pressure (1 atm) and low temperature (< 60°C). In case of LOCA, decay heat from fuel rods is removed by conduction heat transfer to the reactor water pool. Since the cooling water does not contact a fuel rod directly, core design has much flexibility without considering dry-out limitation and Minimum Critical Power Ratio (MCPR). Additionally an effective use of spent fuel is expected.  相似文献   

11.
Analysis of reactivity induced accidents in Pakistan Research Reactor-1 (PARR-1) utilizing low enriched uranium (LEU) fuel, has been carried out using standard computer code PARET. The present core comprises of 29 standard and five control fuel elements. Various modes of reactivity insertions have been considered. The events studied include: start-up accident; accidental drop of a fuel element on the core; flooding of a beam tube with water; removal of an in-pile experiment during reactor operation etc. For each of these transients, time histories of reactor power, energy released and clad surface temperature etc. were calculated. The results reveal that the peak clad temperatures remain well below the clad melting temperature during these accidents. It is concluded that the reactor, which is operated safely at a steady-state power level of 10 MW, with coolant flow rate of 950 m3/h, will also be safe against any possible reactivity induced accident and will not result in a fuel failure.  相似文献   

12.
在自主研发的事故分析程序SCTRAN的基础上,开发并验证了二维导热模型和辐射换热模型,并将改进后的SCTRAN应用于加拿大压力管式超临界水堆在失水事故(LOCA)叠加丧失紧急堆芯冷却系统(LOECC)事故中的堆芯安全评估,并对燃料棒到慢化剂之间的传热效率以及关键的影响因素进行了评估。计算结果表明,在LOCA叠加LOECC工况下,燃料棒到燃料通道的辐射换热和燃料棒到蒸汽的自然对流换热能够有效导出反应堆的衰变余热,最高功率的燃料组件内、外圈燃料棒的最高包壳温度分别为1278℃和1192℃,均低于不锈钢包壳的熔化温度,因此整个事故过程中不会发生堆芯熔化。   相似文献   

13.
Thermal characteristics of the reference DUPIC fuel has been studied for its feasibility of loading in the CANDU reactor. Half of the DUPIC fuel bundle has been modeled for a subchannel analysis of the ASSERT-IV Code which was developed by AECL. From the calculated mixture enthalpy, equilibrium quality and void fraction distributions in subchannels of the fuel bundle, it is found that the gravity effect may be pronounced in the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. The asymmetric distribution of the coolant in the fuel bundle is known to be undesirable since the minimum critical heat flux ratio can be reduced for a given value of the channel flow rate. On the other hand, the central region of the DUPIC fuel bundle has been found to be cooled more efficiently than that of the standard fuel bundle in the subcooled and the local boiling regimes due to the fuel geometry and the fuel element power changes. Based upon the subchannel modeling used in this study, the location of minimum critical heat flux ratio in the DUPIC fuel bundle turned out to be very similar to that of the standard fuel when the equivalent values of channel power and channel flow rate are used. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the subchannel-wise mixture enthalpy and void fraction peaks are located in the peripheral region of the DUPIC fuel bundle while those are located in the central region of the standard CANDU fuel bundle. Reduced values of the channel flow rates were used to study the effect of channel flow rate variation. The effect of the channel flow reduction on different thermal-hydraulic parameters have been discussed. This study shows that the subchannel analysis for the horizontal flow is very informative in developing new fuel for the CANDU reactor.  相似文献   

14.
The radioactive isotope ~(60)Co is used in many applications and is typically produced in heavy water reactors. As most of the commercial reactors in operation are pressurized light water reactors(PWRs), the world supply of high level radioactive cobalt would be greatly increased if~(60)Co could be produced in them. Currently,~(60)Co production in PWRs has not been extensively studied;for the ~(59)Co(n, c)~(60)Co reaction, the positioning of ~(59)Co rods in the reactor determines the rate of production. This article primarily uses the models of~(60)Co production in Canadian CANDU power reactors and American boiling water reactors; based on relevant data from the pressurized water Daya Bay nuclear power plant, a PWR core model is constructed with the Monte Carlo N-Particle Transport Code; this model suggests changes to existing fuel assemblies to enhance ~(60)Co production. In addition, the plug rods are replaced with ~(59)Co rods in the improved fuel assemblies in the simulation model to calculate critical parameters including the effective multiplication factor,neutron flux density, and distribution of energy deposition.By considering different numbers of ~(59)Co rods, the simulation indicates that different layout schemes have different impact levels, but the impact is not large. As a whole, the components with four~(59)Co rods have a small impact, andthe parameters of the reactor remain almost unchanged when four ~(59)Co rods replace the secondary neutron source.Therefore, in theory, the use of a PWR to produce ~(60)Co is feasible.  相似文献   

15.
Important steady-state thermohydraulic parameters of the TRIGA research reactor operating under natural convection mode of coolant flow were investigated using NCTRIGA computer code. Neutronic parameters used in preparing the input of NCTRIGA were taken from the analysis performed by 3-D Monte Carlo code MCNP4C. Benchmarking of the NCTRIGA calculated results were performed against the experimental data measured by the thermocouples in the instrumented fuel element (IFE) during the steady state operation of the reactor under natural convection mode of coolant flow. Various thermohydraulic parameters like the coolant velocity, flow rate and mass flow rate were generated for the hot channel as well as for the two channels comprising instrumented fuels. Calculated peak fuel temperatures at different power levels were compared with the measured values and also with the calculations performed by PARET code. Axial temperature profile at the fuel centreline, fuel surface and coolant in the hot channel were generated. Fuel surface heat flux, heat transfer coefficient and Reynolds’s number for the hot channel were also calculated. The effect of fuel-cladding gap and the influence of fuel rod spacing were investigated to validate the performance of NCTRIGA code. The investigated results were found to be in good agreement with the experimental values, which indicates that the NCTRIGA code can be used with confidence for TRIGA reactor analysis.  相似文献   

16.
The main problem in nuclear energy is providing of safety at all stages of lifetime of nuclear installations in conditions of normal operation, accidents and at shutdown. Ignalina NPP, located in Lithuania, is one of the latest with RBMK reactors at highest capacity. Ignalina NPP has two units, both are closed for decommissioning now (in 2004 and 2009). Both units are equipped with RBMK-1500 reactors, the thermal power output is 4200 MW, the electrical power capacity is 1500 MW for each. In RBMK-1500 reactor the fuel assemblies remain for long time inside reactor core after the final shutdown. The paper discusses possibility of heat removal from the RBMK-1500 core at shutdown condition by natural circulation of water (1) and air (2) inside the fuel channels. In first case the decay heat from fuel assemblies is removed due to natural circulation of water and the piping above reactor core should be cooled by means of ventilation in the drum separator compartments. To warrant free access of air in to fuel channels (in the second case) the reactor cooling system should be completely dry out and the pressure headers and the steam discharge valves in steam lines should be opened. If mentioned conditions will be fulfilled, the reactor core will be cooled by natural circulation of water or air and fuel rods remain intact.  相似文献   

17.
综合考虑辐照试验指标与燃料试验安全、高通量工程试验堆(HFETR)运行要求、试验段压差波动等因素,基于HFETR开展了快堆燃料短棒辐照试验方案设计与分析,确定了铅铋合金层厚度、冷却水流道结构、阻力塞结构、冷却水流量等关键参数,获得了热棒包壳最高温度为(490±60)℃的高线功率密度辐照试验方案。试验结果表明,热棒最大线功率密度为68~85 kW/m时,包壳与燃料芯体温度满足辐照试验要求且留有余量;在200~300 kPa堆芯压差范围内,相同压差下试验段流量的计算流体力学(CFX)计算值比试验值偏小9% ~11%;试验段外侧窄缝流道的流量份额为7.3%,显著低于该流道的流通面积份额,满足线功率密度为85 kW/m时燃料短棒的冷却要求。本文提出的辐照试验方案可为快堆燃料棒的高线功率密度辐照试验提供参考。   相似文献   

18.
ABSTRACT

Neutronics analysis was conducted for a proposed megawatt-class gas cooled space nuclear reactor design. The reactor design has a high operating temperature of up to 1500 K. Annular UO2 fuel rods were used to reduce the central temperature of the fuel. The thermal power is 2.3 MWt and is converted into electric power by a direct Brayton cycle. The control rods were arranged in different configurations and were analyzed in order to evaluate the influence on the reactor design in different scenarios. The calculation results reveal that the control rods arrangements have influences on the begin-of-life (BOL) excess reactivity and the shutdown reactivity. The distribution of control rods affects the neutron economy and leakage in the fuel region, consequently affecting the reactivity. It is also known that the reactivity in flooding scenarios are not sensitive to different control rod arrangements. Meanwhile, according to calculation results, the proposed reactor design has enough shutdown reactivity margin which will allow for flexible control strategy. Further analysis is still needed for more detailed and accurate parameters of the reactor design.  相似文献   

19.
文章以大亚湾核电站压水堆核电机组为原型,根据程序要求建立起燃料棒的几何与核物理模型,进行MCNP程序模拟计算,并不断调整模型以减小计算方差,得到两组不同D与ε下的keff值并分别作图。实验结果表明:D与keff为类抛物线函数关系,ε与keff为对数函数关系。  相似文献   

20.
A Boiling Water Reactor core concept has been proposed using a new fuel component called spectral shift rod (SSR). The SSR is a new type of water rod in which a water level is formed during core operation. The water level can be controlled by the core recirculation flow rate. By using SSRs, the reactor can be operated with all control rods withdrawn through the operation cycle as well as that a much larger natural uranium saving is possible due to spectral shift operation than in current BWRs. The steady state and transient characteristics of the SSRs have been examined by experiments and analyses to certify the feasibility. In a reference design, a four times larger spectral shift width as for the current BWR has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号