首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Triggered by the growing needs of developing semiconductor devices at ever‐decreasing scales, strain engineering of 2D materials has recently seen a surge of interest. The goal of this principle is to exploit mechanical strain to tune the electronic and photonic performance of 2D materials and to ultimately achieve high‐performance 2D‐material‐based devices. Although strain engineering has been well studied for traditional semiconductor materials and is now routinely used in their manufacturing, recent experiments on strain engineering of 2D materials have shown new opportunities for fundamental physics and exciting applications, along with new challenges, due to the atomic nature of 2D materials. Here, recent advances in the application of mechanical strain into 2D materials are reviewed. These developments are categorized by the deformation modes of the 2D material–substrate system: in‐plane mode and out‐of‐plane mode. Recent state‐of‐the‐art characterization of the interface mechanics for these 2D material–substrate systems is also summarized. These advances highlight how the strain or strain‐coupled applications of 2D materials rely on the interfacial properties, essentially shear and adhesion, and finally offer direct guidelines for deterministic design of mechanical strains into 2D materials for ultrathin semiconductor applications.  相似文献   

2.
Interface‐dominated materials such as nanocrystalline thin films have emerged as an enthralling class of materials able to engineer functional properties of transition metal oxides widely used in energy and information technologies. In particular, it has been proven that strain‐induced defects in grain boundaries of manganites deeply impact their functional properties by boosting their oxygen mass transport while abating their electronic and magnetic order. In this work, the origin of these dramatic changes is correlated for the first time with strong modifications of the anionic and cationic composition in the vicinity of strained grain boundary regions. We are also able to alter the grain boundary composition by tuning the overall cationic content in the films, which represents a new and powerful tool, beyond the classical space charge layer effect, for engineering electronic and mass transport properties of metal oxide thin films useful for a collection of relevant solid‐state devices.  相似文献   

3.
Metal–organic frameworks (MOFs) provide intriguing platforms for the design of responsive materials. It is challenging to mobilize as many components as possible of a MOF to collaboratively accomplish multiple responsive properties. Here, reversible photochromism, piezochromism, hydrochromism, ionochromism, and luminescence modulation of an ionic Eu(III) MOF is reported furnished by cationic electron‐deficient viologen units and exchangeable guest anions. Mechanistically, the extraordinarily versatile responsive properties are owed to electron transfer (ET), charge transfer (CT), and energy transfer, involving viologen as electron acceptor, anion as electron donor, luminescing Eu(III) as energy donor, and anion‐viologen CT complex or ET‐generated radical as energy acceptor (luminescence quencher). Moreover, guest anions and waters provide flexible handles to control the ET‐based responsive properties. Water release/reuptake or exchange with organic solvents can switch on/off the response to light, while reversible anion exchange can disenable or awaken the responses to pressure, light, and water release/reuptake. The impacts of water and anions on ET are justified by the high polarity and hydrogen‐bonding capability of water, the different electron donor strength of anions, and the strong I?‐viologen CT interactions. The rich responsive behaviors have great implications for applications such as pressure sensors, iodide detection, and chemical logic gates.  相似文献   

4.
Synthesis of novel solids, which is a pivotal starting point in innovative materials research, is markedly impeded by the lack of predictability. A conception is presented that enables syntheses of new materials to be rationally planned. The approach is based on the atomic configuration space, and the potential energies associated to the atomic arrangements. Each minimum of the respective hyperspace of potential energy corresponds to a chemical compound capable of existence. Thus the whole realm of known and not‐yet‐known chemical compounds is represented in virtuo on that energy landscape. From this view it follows further that the full sets of the corresponding materials' properties are pre‐determined. Within the scope of the “Energy Landscape Concept of Chemical Matter” presented, targets for synthesis are identified in a rational manner by searching the underlying potential energy landscapes for (meta)stable candidates computationally. Subsequently, the gained information are transferred to finite temperatures, which enables phase diagrams to be calculated, including metastable manifestations of matter, from first principles. The subsequent steps in materials discovery, e.g., assessing the properties and the impact of defects on the performance of the solids predicted are addressed briefly. The approach presented is complete and physically consistent; its feasibility has been proven and validated experimentally.  相似文献   

5.
The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi‐two dimensional layered non‐metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal‐catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided.  相似文献   

6.
Synthetic biology applies engineering concepts to build cellular systems that perceive and process information. This is achieved by assembling genetic modules according to engineering design principles. Recent advance in the field has contributed optogenetic switches for controlling diverse biological functions in response to light. Here, the concept is introduced to apply synthetic biology switches and design principles for the synthesis of multi‐input‐processing materials. This is exemplified by the synthesis of a materials system that counts light pulses. Guided by a quantitative mathematical model, functional synthetic biology‐derived modules are combined into a polymer framework resulting in a biohybrid materials system that releases distinct output molecules specific to the number of input light pulses detected. Further demonstration of modular extension yields a light pulse‐counting materials system to sequentially release different enzymes catalyzing a multistep biochemical reaction. The resulting smart materials systems can provide novel solutions as integrated sensors and actuators with broad perspectives in fundamental and applied research.  相似文献   

7.
High‐entropy materials, especially high‐entropy alloys and oxides, have gained significant interest over the years due to their unique structural characteristics and correlated possibilities for tailoring of functional properties. The developments in the area of high‐entropy oxides are highlighted here, with emphasis placed on their fundamental understanding, including entropy‐dominated phase‐stabilization effects and prospective applications, e.g., in the field of electrochemical energy storage. Critical comments on the different classes of high‐entropy oxides are made and the underlying principles for the observed properties are summarized. The diversity of materials design, provided by the entropy‐mediated phase‐stabilization concept, allows engineering of new oxide candidates for practical applications, warranting further studies in this emerging field of materials science.  相似文献   

8.
Carbon‐rich materials have drawn tremendous attention toward a wide spectrum of energy applications due to their superior electronic mobility, good mechanical strength, ultrahigh surface area, and more importantly, abundant diversity in structure and components. Herein, rationally designed and bottom‐up constructed carbon‐rich materials for energy storage and conversion are discussed. The fundamental design principles are itemized for the targeted preparation of carbon‐rich materials and the latest remarkable advances are summarized in terms of emerging dimensions including sp2 carbon fragment manipulation, pore structure modulation, topological defect engineering, heteroatom incorporation, and edge chemical regulation. In this respect, the corresponding structure–property relationships of the resultant carbon‐rich materials are comprehensively discussed. Finally, critical perspectives on future challenges of carbon‐rich materials are presented. The progress highlighted here will provide meaningful guidance on the precise design and targeted synthesis of carbon‐rich materials, which are of critical importance for the achievement of performance characteristics highly desirable for urgent energy deployment.  相似文献   

9.
Graphene is a truly two‐dimensional atomic crystal with exceptional electronic and mechanical properties. Whereas conventional bulk and thin‐film materials have been studied extensively, the key mechanical properties of graphene, such as tearing and cracking, remain unknown, partly due to its two‐dimensional nature and ultimate single‐atom‐layer thickness, which result in the breakdown of conventional material models. By combining first‐principles ReaxFF molecular dynamics and experimental studies, a bottom‐up investigation of the tearing of graphene sheets from adhesive substrates is reported, including the discovery of the formation of tapered graphene nanoribbons. Through a careful analysis of the underlying molecular rupture mechanisms, it is shown that the resulting nanoribbon geometry is controlled by both the graphene–substrate adhesion energy and by the number of torn graphene layers. By considering graphene as a model material for a broader class of two‐dimensional atomic crystals, these results provide fundamental insights into the tearing and cracking mechanisms of highly confined nanomaterials.  相似文献   

10.
Rigid biological systems are increasingly becoming a source of inspiration for the fabrication of next generation advanced functional materials due to their diverse hierarchical structures and remarkable engineering properties. Among these rigid biomaterials, nacre, as the main constituent of the armor system of seashells, exhibiting a well‐defined ‘brick‐and‐mortar’ architecture, excellent mechanical properties, and interesting iridescence, has become one of the most attractive models for novel artificial materials design. In this review, recent advances in nacre‐inspired artificial carbonate nanocrystals and layered structural nanocomposites are presented. To clearly illustrate the inspiration of nacre, the basic principles relating to plate‐like aragonite single‐crystal growth and the contribution of hierarchical structure to outstanding properties in nacre are discussed. The inspiration of nacre for the synthesis of carbonate nanocrystals and the fabrication of layered structural nanocomposites is also discussed. Furthermore, the broad applications of these nacre inspired materials are emphasized. Finally, a brief summary of present nacre‐inspired materials and challenges for the next generation of nacre‐inspired materials is given.  相似文献   

11.
The mechanisms of carrier transport in the cross‐plane crystal orientation of transition metal dichalcogenides are examined. The study of in‐plane electronic properties of these van der Waals compounds has been the main research focus in recent years. However, the distinctive physical anisotropies, short‐channel physics, and tunability of cross layer interactions can make the study of their electronic properties along the out‐of‐plane crystal orientation valuable. Here, the out‐of‐plane carrier transport mechanisms in niobium diselenide and hafnium disulfide are explored as two broadly different representative materials. Temperature‐dependent current–voltage measurements are preformed to examine the mechanisms involved. First principles simulations and a tunneling model are used to understand these results and quantify the barrier height and hopping distance properties. Using Raman spectroscopy, the thermal response of the chemical bonds is directly explored and the insight into the van der Waals gap properties is acquired. These results indicate that the distinct cross‐plane carrier transport characteristics of the two materials are a result of material thermal properties and thermally mediated transport of carriers through the van der Waals gaps. Exploring the cross‐plane electron transport, the exciting physics involved is unraveled and potential new avenues for the electronic applications of van der Waals layers are inspired.  相似文献   

12.
A new family of single‐atom‐thick 2D germanium‐based materials with graphene‐like atomic arrangement, germanene and functionalized germanene, has attracted intensive attention due to their large bandgap and easily tailored electronic properties. Unlike carbon atoms in graphene, germanium atoms tend to adopt mixed sp2/sp3 hybridization in germanene, which makes it chemically active on the surface and allows its electronic states to be easily tuned by chemical functionalization. Impressive achievements in terms of the applications in energy storage and catalysis have been reported by using germanene and functionalized germanene. Herein, the fabrication of epitaxial germanene on different metallic substrates and its unique electronic properties are summarized. Then, the preparation strategies and the fundamental properties of hydrogen‐functionalized germanene (germanane or GeH) and other ligand‐terminated forms of germanene are presented. Finally, the progress of their applications in energy storage and catalysis, including both experimental results and theoretical predictions, is analyzed.  相似文献   

13.
Biological composites have evolved elaborate hierarchical structures to achieve outstanding mechanical properties using weak but readily available building blocks. Combining the underlying design principles of such biological materials with the rich chemistry accessible in synthetic systems may enable the creation of artificial composites with unprecedented properties and functionalities. This bioinspired approach requires identification, understanding, and quantification of natural design principles and their replication in synthetic materials, taking into account the intrinsic properties of the stronger artificial building blocks and the boundary conditions of engineering applications. In this progress report, the scientific and technological questions that have to be addressed to achieve this goal are highlighted, and examples of recent research efforts to tackle them are presented. These include the local characterization of the heterogeneous architecture of biological materials, the investigation of structure–function relationships to help unveil natural design principles, and the development of synthetic processing routes that can potentially be used to implement some of these principles in synthetic materials. The importance of replicating the design principles of biological materials rather than their structure per se is highlighted, and possible directions for further progress in this fascinating, interdisciplinary field are discussed.  相似文献   

14.
Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic‐device applications. In the few‐nanometers‐thick epitaxial oxide films, atomic‐scale structural imperfections, such as the ubiquitously existed one‐unit‐cell‐high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO3 films as a model system, an intrinsic tunneling‐conductance enhancement is reported near the terrace edges. Scanning‐probe‐microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First‐principles calculations suggest that the terrace‐edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling‐conductance enhancement can be discovered in other transition metal oxides and controlled by surface‐termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low‐dimensional quantum phases.  相似文献   

15.
Living organisms have ingeniously evolved functional gradients and heterogeneities to create high-performance biological materials from a fairly limited choice of elements and compounds during long-term evolution and selection. The translation of such design motifs into synthetic materials offers a spectrum of feasible pathways towards unprecedented properties and functionalities that are favorable for practical uses in a variety of engineering and medical fields. Here, we review the basic design forms and principles of naturally-occurring gradients in biological materials and discuss the functions and benefits that they confer to organisms. These gradients are fundamentally associated with the variations in local chemical compositions/constituents and structural characteristics involved in the arrangement, distribution, dimensions and orientations of the building units. The associated interfaces in biological materials invariably demonstrate localized gradients and a variety of gradients are generally integrated over multiple length-scales within the same material. The bioinspired design and applications of synthetic functionally graded materials that mimic their natural paradigms are revisited and the emerging processing techniques needed to replicate the biological gradients are described. It is expected that in the future bioinspired gradients and heterogeneities will play an increasingly important role in the development of high-performance materials for more challenging applications.  相似文献   

16.
Since the discovery of Dirac physics in graphene, research in 2D materials has exploded with the aim of finding new materials and harnessing their unique and tunable electronic and optical properties. The follow‐on work on 2D dielectrics and semiconductors has led to the emergence and development of hexagonal boron nitride, black phosphorus, and transition metal disulfides. However, the spectrum of good insulating materials is still very narrow. Likewise, 2D materials exhibiting correlated phenomena such as superconductivity, magnetism, and ferroelectricity have yet to be developed or discovered. These properties will significantly enrich the spectrum of functional 2D materials, particularly in the case of high phase‐transition temperatures. They will also advance a fascinating fundamental frontier of size and proximity effects on correlated ground states. Here, a broad family of layered metal thio(seleno)phosphate materials that are moderate‐ to wide‐bandgap semiconductors with incipient ionic conductivity and a host of ferroic properties are reviewed. It is argued that this material class has the potential to merge the sought‐after properties of complex oxides with electronic functions of 2D and quasi‐2D electronic materials, as well as to create new avenues for both applied and fundamental materials research in structural and magnetic correlations.  相似文献   

17.
The fast development of nanoscience and nanotechnology has significantly advanced the fabrication of nanocatalysts and the in‐depth study of the structural‐activity characteristics of materials at the atomic level. Vacancies, as typical atomic defects or imperfections that widely exist in solid materials, are demonstrated to effectively modulate the physicochemical, electronic, and catalytic properties of nanomaterials, which is a key concept and hot research topic in nanochemistry and nanocatalysis. The recent experimental and theoretical progresses achieved in the preparation and application of vacancy‐rich nanocatalysts for electrochemical water splitting are explored. Engineering of vacancies has shown to open up a new avenue beyond the traditional morphology, size, and composition modifications for the development of nonprecious electrocatalysts toward efficient energy conversion. First, an introduction followed by discussions of different types of vacancies, the approaches to create vacancies, and the advanced techniques widely used to characterize these vacancies are presented. Importantly, the correlations between the vacancies and activities of the vacancy‐rich electrocatalysts via tuning the electronic states, active sites, and kinetic energy barriers are reviewed. Finally, perspectives on the existing challenges along with some opportunities for the further development of vacancy‐rich noble metal‐free electrocatalysts with high performance are discussed.  相似文献   

18.
The interface between III–V and metal‐oxide‐semiconductor materials plays a central role in the operation of high‐speed electronic devices, such as transistors and light‐emitting diodes. The high‐speed property gives the light‐emitting diodes a high response speed and low dark current, and they are widely used in communications, infrared remote sensing, optical detection, and other fields. The rational design of high‐performance devices requires a detailed understanding of the electronic structure at this interface; however, this understanding remains a challenge, given the complex nature of surface interactions and the dynamic relationship between the morphology evolution and electronic structures. Herein, in situ transmission electron microscopy is used to probe and manipulate the structural and electrical properties of ZrO2 films on Al2O3 and InGaAs substrate at the atomic scale. Interfacial defects resulting from the spillover of the oxygen‐atom conduction‐band wavefunctions are resolved. This study unearths the fundamental defect‐driven interfacial electric structure of III–V semiconductor materials and paves the way to future high‐speed and high‐reliability devices.  相似文献   

19.
20.
Multi‐principal elemental alloys, commonly referred to as high‐entropy alloys (HEAs), are a new class of emerging advanced materials with novel alloy design concept. Unlike the design of conventional alloys, which is based on one or at most two principal elements, the design of HEA is based on multi‐principal elements in equal or near‐equal atomic ratio. The advent of HEA has revived the alloy design perception and paved the way to produce an ample number of compositions with different combinations of promising properties for a variety of structural applications. Among the properties possessed by HEAs, sluggish diffusion and strength retention at elevated temperature have caught wide attention. The need to develop new materials for high‐temperature applications with superior high‐temperature properties over superalloys has been one of the prime concerns of the high‐temperature materials research community. The current article shows that HEAs have the potential to replace Ni‐base superalloys as the next generation high‐temperature materials. This review focuses on the phase stability, microstructural stability, and high‐temperature mechanical properties of HEAs. This article will be highly beneficial for materials engineering and science community whose interest is in the development and understanding of HEAs for high‐temperature applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号