首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The excellent energy‐storage performance of ceramic capacitors, such as high‐power density, fast discharge speed, and the ability to operate over a broad temperature range, gives rise to their wide applications in different energy‐storage devices. In this work, the (Pb0.98La0.02)(Zr0.55Sn0.45)0.995O3 (PLZS) antiferroelectric (AFE) ceramics are prepared via a unique rolling machine approach. The field‐induced multiphase transitions are observed in polarization–electric field (P–E) hysteresis loops. All the PLZS AFE ceramics possess high energy‐storage densities and discharge efficiency (above 80%) with different sintering temperatures. Of particular significance is that an ultrahigh recoverable energy‐storage density of 10.4 J cm‐3 and a high discharge efficiency of 87% are achieved at 40 kV mm‐1 for PLZS ceramic with a thickness of 0.11 mm, sintered at 1175 °C, which are by far the highest values ever reported in bulk ceramics. Moreover, the corresponding ceramics exhibit a superior discharge current density of 1640 A cm‐2 and ultrafast discharge speed (75 ns discharge period). This great improvement in energy‐storage performance is expected to expand the practical applications of dielectric ceramics in numerous electronic devices.  相似文献   

2.
Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major barrier hindering the provision of sufficient energy densities in lead‐free dielectric ceramics and practical applications thereof. Herein, a rational structure design inspired by nature is demonstrated as an effective strategy to overcome these challenges. Bioinspired raspberry‐like hierarchically structured all‐inorganic nanocomposites have been prepared by enclosing microsized BaTiO3‐Bi(Mg0.5Zr0.5)O3 (BT‐BMZ) relaxor ferroelectrics using core‐shell BT‐BMZ@SiO2 nanoparticles. The synergistic effects of the bioinspired hierarchical structure and insulating SiO2 nano‐coating result in significantly improved dielectric breakdown strength and sustained large polarization in the nanocomposites, as corroborated by experimental characterizations and theoretical simulations. As a result, an ultrahigh energy density of 3.41 J cm?3 and a high efficiency of 85.1%, together with outstanding thermal stability within a broad temperature range, have been simultaneously achieved in the hierarchically structured nanocomposites. This contribution provides a feasible and paradigmatic approach to develop high‐performance dielectrics for electrostatic energy storage applications using bioinspired structure design.  相似文献   

3.
[001]C‐Textured 0.55Pb(Ni1/3Nb2/3)O3–0.15PbZrO3–0.3PbTiO3 (PNN‐PZT) ceramics are prepared by the templated grain‐growth method using BaTiO3 (BT) platelet templates. Samples with different template contents are fabricated and compared in terms of texture fraction, microstructure, and piezoelectric, ferroelectric and dielectric properties. High piezoelectric performance (d33 = 1210 pC N?1, d33* = 1773 pm V?1 at 5 kV cm?1) and high figure of merit g33?d33 (21.92 × 10?12 m2 N?1) are achieved in the [001]C‐textured PNN‐PZT ceramic with 2 vol% BaTiO3 template, for which the texture fraction is 82%. In addition, domain structures of textured PNN‐PZT ceramics are observed and analyzed, which provide clues to the origin of the giant piezoelectric and electromechanical coupling properties of PNN‐PZT ceramics.  相似文献   

4.
Chemisorption of the activated metallocene polymerization catalyst derived from [rac‐ethylenebisindenyl]zirconium dichlororide (EBIZrCl2) on the native Al2O3 surfaces of metallic aluminum nanoparticles, followed by exposure to propylene, affords 0–3 metal‐isotactic polypropylene nanocomposites. The microstructures of these nanocomposites are characterized by X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Electrical measurements show that increasing the concentration of the filler nanoparticles increases the effective permittivity of the nanocomposites to ?r values as high as 15.4. Because of the high contrast in the complex permittivities and conductivities between the metallic aluminum nanoparticles and the polymeric polypropylene matrix, these composites obey the percolation law for two‐phase composites, reaching maximum permittivities just before the percolation threshold volume fraction, vf ≈ 0.16. This unique method of in situ polymerization from the surface of metallic Al particles produces a new class of materials that perform as superior pulse‐power capacitors, with low leakage current densities of ≈10?7–10?9 A/cm2 at an applied field of 105 V/cm, low dielectric loss in the 100 Hz–1 MHz frequency range, and recoverable energy storage as high as 14.4 J/cm3.  相似文献   

5.
2D conjugated metal‐organic frameworks (2D c‐MOFs) are emerging as a novel class of conductive redox‐active materials for electrochemical energy storage. However, developing 2D c‐MOFs as flexible thin‐film electrodes have been largely limited, due to the lack of capability of solution‐processing and integration into nanodevices arising from the rigid powder samples by solvothermal synthesis. Here, the synthesis of phthalocyanine‐based 2D c‐MOF (Ni2[CuPc(NH)8]) nanosheets through ball milling mechanical exfoliation method are reported. The nanosheets feature with average lateral size of ≈160 nm and mean thickness of ≈7 nm (≈10 layers), and exhibit high crystallinity and chemical stability as well as a p‐type semiconducting behavior with mobility of ≈1.5 cm2 V?1 s?1 at room temperature. Benefiting from the ultrathin feature, the nanosheets allow high utilization of active sites and facile solution‐processability. Thus, micro‐supercapacitor (MSC) devices are fabricated mixing Ni2[CuPc(NH)8] nanosheets with exfoliated graphene, which display outstanding cycling stability and a high areal capacitance up to 18.9 mF cm?2; the performance surpasses most of the reported conducting polymers‐based and 2D materials‐based MSCs.  相似文献   

6.
Recently, large electrocaloric effects (ECE) in antiferroelectric sol‐gel PbZr0.95Ti0.05O3 thin films and in ferroelectric polymer P(VDF‐TrFE)55/45 thin films were observed near the ferroelectric Curie temperatures of these materials (495 K and 353 K, respectively). Here a giant ECE (ΔT = 45.3 K and ΔS = 46.9 J K?1 kg?1 at 598 kV cm?1) is obtained in relaxor ferroelectric Pb0.8Ba0.2ZrO3 (PBZ) thin films fabricated on Pt(111)/TiOx/SiO2/Si substrates using a sol‐gel method. Nanoscale antiferroelectric (AFE) and ferroelectric (FE) phases coexist at room temperature (290 K) rather than at the Curie temperature (408 K) of the material. The giant ECE in such a system is attributed to the coexistence of AFE and FE phases and a field‐induced nanoscale AFE to FE phase transition. The giant ECE of the thin film makes this a promising material for applications in cooling systems near room temperature.  相似文献   

7.
In this study, the excellent energy storage performance is achieved by constructing opposite double‐heterojunction ferroelectricity–insulator–ferroelectricity configuration. The PbZr0.52Ti0.48O3 films and Al2O3 films are chosen as the ferroelectricity and insulator, respectively. The microstructures, polarization behaviors, breakdown strength, leakage current density, and energy storage performance are investigated systematically of the constructed PbZr0.52Ti0.48O3/Al2O3/PbZr0.52Ti0.48O3 opposite double‐heterojunction. The ultrahigh electric field breakdown strength (≈5711 kV cm?1) is obtained, which is beneficial to achieve high energy storage density. Meanwhile, the high linearity of hysteresis loops with low energy dissipation is obtained at a proper annealing temperature, which is induced by partially crystallized and is in favor of achieving high energy storage efficiency η. The PbZr0.52Ti0.48O3/Al2O3/PbZr0.52Ti0.48O3 annealed at 550 °C exhibits excellent energy storage performance with a storage density of 63.7 J cm?3 and efficiency of 81.3%, which is ascribed to the synergetic effect of electric breakdown strength (EBDS = 5711 kV cm?1) and the polarization (PmPr = 23.74 µC cm?2). The proposed method in this study opens a new door to improve the energy storage performance of inorganic ferroelectric capacitors.  相似文献   

8.
Highly conductive metal selenides are gaining prominence as promising electrode materials in electrochemical energy‐storage fields. However, phase‐pure bimetallic selenides are scarcely retrieved, and their underlying charge‐storage mechanisms are still far from clear. Here, first a solvothermal strategy is devised to purposefully fabricate monodisperse hollow NiCoSe2 (H‐NiCoSe2) sub‐microspheres. Inherent formation of metallic H‐NiCoSe2 is tentatively put forward with comparative structure‐evolution investigations. Interestingly, the fresh H‐NiCoSe2 does not demonstrate striking supercapacitive behaviors when evaluated for electrochemical supercapacitors (ESs). But it exhibits competitive pseudocapacitance of ≈750 F g?1 at a rate of 3 A g?1 with a high loading of 7 mg cm?2 after ≈100 cyclic voltammetry (CV) cycles. With systematic physicochemical/electrochemical analyses, intrinsic energy‐storage mechanism of the H‐NiCoSe2 is convincingly revealed that the electrooxidation‐generated biactive CoOOH/NiOOH phases in aqueous KOH over CV scanning, rather than the H‐NiCoSe2 itself, account for the remarkable pesudocapacitance observed after cycling. An assembled H‐NiCoSe2‐based asymmetric device has delivered an energy density of ≈25.5 Wh kg?1 with a power rate of ≈3.75 kW kg?1, and long‐span cycle life. More significantly, the electrode design and new perspectives here hold profound promise in enriching material synthesis methodologies and in‐depth understanding of the complex charge‐storage process of newly emerging pseudocapacitive materials for next‐generation ESs.  相似文献   

9.
Multiferroics are promising for sensor and memory applications, but despite all efforts invested in their research no single‐phase material displaying both ferroelectricity and large magnetization at room‐temperature has hitherto been reported. This situation has substantially been improved in the novel relaxor ferroelectric single‐phase (BiFe0.9Co0.1O3)0.4–(Bi1/2K1/2TiO3)0.6, where polar nanoregions (PNR) transform into static‐PNR as evidenced by piezoresponse force microscopy (PFM) and simultaneously enable congruent multiferroic clusters (MFC) to emerge from inherent strongly magnetic Bi(Fe,Co)O3 rich regions as verified by magnetic force microscopy (MFM) and secondary ion mass spectrometry. The material's exceptionally large Néel temperature TN = 670 ± 10 K, as found by neutron diffraction, is proposed to be a consequence of ferrimagnetic order in MFC. On these MFC, exceptionally large direct and converse magnetoelectric (ME) coupling coefficients, α ≈ 1.0 × 10?5 s m?1 at room‐temperature, are measured by PFM and MFM, respectively. It is expected that the non‐ergodic relaxor properties which are governed by the Bi1/2K1/2TiO3 component to play a vital role in the strong ME coupling, by providing an electrically and mechanically flexible environment to MFC. This new class of non‐ergodic relaxor multiferroics bears great potential for applications. Especially the prospect of a ME nanodot storage device seems appealing.  相似文献   

10.
Energy conversion and storage devices are highly desirable for the sustainable development of human society. Hybrid organic–inorganic perovskites have shown great potential in energy conversion devices including solar cells and photodetectors. However, its potential in energy storage has seldom been explored. Here the crystal structure and electrical properties of the 2D hybrid perovskite (benzylammonium)2PbBr4 (PVK-Br) are investigated, and the consecutive ferroelectric-I (FE1) to ferroelectric-II (FE2) then to antiferroelectric (AFE) transitions that are driven by the orderly alignment of benzylamine and the distortion of [PbBr6] octahedra are found. Furthermore, accompanied by field-induced AFE to FE transition near room temperature, a large energy storage density of ≈1.7 J cm−3 and a wide working temperature span of ≈70 K are obtained; both of which are among the best in hybrid AFEs. This good energy storage performance is attributed to the large polarization of ≈7.6 µC cm−2 and the high maximum electric field of over 1000 kV cm−1, which, as revealed by theoretical calculations, originate from the cooperative coupling between the [PbBr6] octahedral framework and the benzylamine molecules. The research clarifies the discrepancy in the phase transition character of PVK-Br and shed light on developing high-performance energy storage devices based on 2D hybrid perovskite.  相似文献   

11.
The dramatically increasing demand of high‐energy lithium‐ion batteries (LIBs) urgently requires advanced substitution for graphite‐based anodes. Herein, inspired from the extra capacity of lithium storage in solid‐electrolyte interface (SEI) films, layered hydroxide cobalt acetates (LHCA, Co(Ac)0.48(OH)1.52·0.55H2O) are introduced as novel and high‐efficiency anode materials. Furthermore, ultrathin LHCA nanoplates are face‐to‐face anchored on the surface of graphene nanosheets (GNS) through a facile solvothermal method to improve the electronic transport and avoid agglomeration during repeated cycles. Profiting from the parallel structure, LHCA//GNS nanosheets exhibit extraordinary long‐term and high‐rate performance. At the current densities of 1000 and 4000 mA g?1, the reversible capacities maintain ≈1050 mAh g?1 after 200 cycles and ≈780 mAh g?1 after 300 cycles, respectively, much higher than the theoretical value of LHCA according to the conversion mechanism. Fourier transform infrared spectroscopy confirms the conversion from acetate to acetaldehyde after lithiation. A reasonable mechanism is proposed to elucidate the lithium storage behaviors referring to the electrocatalytic conversion of OH groups with Co nanocatalysts. This work can help further understand the contribution of SEI components (especially LiOH and LiAc) to lithium storage. It is envisaged that layered transition metal hydroxides can be used as advanced materials for energy storage devices.  相似文献   

12.
Herein, the effect of the insertion of a thin dielectric HfO2:Al2O3 (HAO) layer at different positions in the Pt/0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BCZT)/Au structure on the energy storage performance of the capacitors is investigated. A high storage performance is achieved through the insertion of a HAO layer between BCZT and Au layers. The insertion of the dielectric layer causes a depolarization field which results in a high linearity hysteresis loop with low energy dissipation. The Pt/BCZT/HAO/Au capacitors show an impressive energy storage density of 99.8 J cm?3 and efficiency of 71.0%, at an applied electric field of 750 kV cm?1. Further, no significant change in the energy storage properties is observed after passing 108 switching cycles through the capacitor. The presence of resistive switching (RS) in leakage current characteristics confirms the strong charge coupling between ferroelectric and insulator layers. The same trend of the RS ratio and the energy storage performance with the variation of the architecture of the devices suggests that the energy storage properties can be improved through the charge coupling between the layers. By combining ferroelectrics and dielectrics into one single structure, the proposed strategy provides an efficient way for developing highly efficient energy storage capacitors.  相似文献   

13.
Sodium manganese hexacyanoferrate (NaxMnFe(CN)6) is one of the most promising cathode materials for sodium‐ion batteries (SIBs) due to the high voltage and low cost. However, its cycling performance is limited by the multiple phase transitions during Na+ insertion/extraction. In this work, a facile strategy is developed to synthesize cubic and monoclinic structured NaxMnFe(CN)6, and their structure evolutions are investigated through in situ X‐ray diffraction (XRD), ex situ Raman, and X‐ray photoelectron spectroscopy (XPS) characterizations. It is revealed that the monoclinic phase undergoes undesirable multiple two‐phase reactions (monoclinic ? cubic ? tetragonal) due to the large lattice distortions caused by the Jahn–Teller effects of Mn3+, resulting in poor cycling performances with 38% capacity retention. The cubic NaxMnFe(CN)6 with high structural symmetry maintains the structural stability during the repeated Na+ insertion/extraction process, demonstrating impressive electrochemical performances with specific capacity of ≈120 mAh g?1 at 3.5 V (vs Na/Na+), capacity retention of ≈70% over 500 cycles at 200 mA g?1. In addition, the TiO2//C‐MnHCF full battery is fabricated with an energy density of 111 Wh kg?1, suggesting the great potential of cubic NaxMnFe(CN)6 for practical energy storage applications.  相似文献   

14.
Dielectric ceramics are fundamental for electronic systems, including energy storages, microwave applications, ultrasonics, and sensors. Relaxor ferroelectrics show superb performance among dielectrics due to their high efficiency and energy density by the nature of nanodomains. Here, a novel non-perovskite relaxor ferroelectric, Bi6Ti5WO22, with ultralow loss, ≈10−3, highly tunable permittivity, ≈2200 at room temperature with 40% tunability and the superparaelectric region at room temperature is presented. The actual crystal structure and the nanodomains of Bi6Ti5WO22 are demonstrat Various-temperature neutron powder diffraction and in situ high-resolution transmission-electron-microscopy illustrate the twinning effect, subtle structure change and micro-strain in the material influenced by temperature, manifesting the actual crystal structure of Bi6Ti5WO22. Compared with dielectric loss of BaTiO3-based dielectric tunable materials, the loss of Bi6Ti5WO22 is more than an order of magnitude lower, which makes it exhibit a figure of merit (≈240), much higher than that of conventional dielectric tunable materials (< 100), endorse the material great potential for direct applications. The present research offers a strategy for discovering novel relaxor ferroelectrics and a highly desirable material for fabricating energy storage capacitors, microwave dielectrics, and ultrasonics.  相似文献   

15.
As a new energy harvesting strategy, triboelectric nanogenerators which have a broad application prospect in collecting environmental energy, human body mechanical energy, and supplying power for low‐power electronic devices, have attracted extensive attention. However, technology challenges still exist in the stretchability for the preparation of some high‐performance triboelectric materials. In this work, a new strategy for nonmetallic nylon‐modified triboelectric nanogenerators (NM‐TENGs) is reported. Nylon is introduced as a high performance friction material to enhance the output performance of the stretchable TENG. The uniform matrix reduces the difficulty of heterogeneous integration and enhances the structural strength. The open‐circuit voltage (VOC) and short‐circuit current (ISC) of NM‐TENG can reach up to 1.17 kV and 138 µA, respectively. The instantaneous power density reaches 11.2 W m?2 and the rectified output can directly light ≈480 LEDs. The transferred charge density is ≈100 µC m?2 in one cycle when charging the capacitor. In addition, a low‐power electronic clock can be driven directly by the rectified signal without additional circuits. NM‐TENG also has high enough strain rate and can be attached to the human body for energy harvesting effectively. This work provides a new idea for fabrication of stretchable TENGs and demonstrates their potential application.  相似文献   

16.
Herein, Ti4+ in P′2‐Na0.67[(Mn0.78Fe0.22)0.9Ti0.1]O2 is proposed as a new strategy for optimization of Mn‐based cathode materials for sodium‐ion batteries, which enables a single phase reaction during de‐/sodiation. The approach is to utilize the stronger Ti–O bond in the transition metal layers that can suppress the movements of Mn–O and Fe–O by sharing the oxygen with Ti by the sequence of Mn–O–Ti–O–Fe. It delivers a discharge capacity of ≈180 mAh g?1 over 200 cycles (86% retention), with S‐shaped smooth charge–discharge curves associated with a small volume change during cycling. The single phase reaction with a small volume change is further confirmed by operando synchrotron X‐ray diffraction. The low activation barrier energy of ≈541 meV for Na+ diffusion is predicted using first‐principles calculations. As a result, Na0.67[(Mn0.78Fe0.22)0.9Ti0.1]O2 can deliver a high reversible capacity of ≈153 mAh g?1 even at 5C (1.3 A g?1), which corresponds to ≈85% of the capacity at 0.1C (26 mA g?1). The nature of the sodium storage mechanism governing the ultrahigh electrode performance in a full cell with a hard carbon anode is elucidated, revealing the excellent cyclability and good retention (≈80%) for 500 cycles (111 mAh g?1) at 5C (1.3 A g?1).  相似文献   

17.
A unique watermelon‐like structured SiOx–TiO2@C nanocomposite is synthesized by a scalable sol–gel method combined with carbon coating process. Ultrafine TiO2 nanocrystals are uniformly embedded inside SiOx particles, forming SiOx–TiO2 dual‐phase cores, which are coated with outer carbon shells. The incorporation of TiO2 component can effectively enhance the electronic and lithium ionic conductivities inside the SiOx particles, release the structure stress caused by alloying/dealloying of Si component and maximize the capacity utilization by modifying the Si–O bond feature and decreasing the O/Si ratio (x‐value). The synergetic combination of these advantages enables the synthesized SiOx–TiO2@C nanocomposite to have excellent electrochemical performances, including high specific capacity, excellent rate capability, and stable long‐term cycleability. A stable specific capacity of ≈910 mAh g?1 is achieved after 200 cycles at the current density of 0.1 A g?1 and ≈700 mAh g?1 at 1 A g?1 for over 600 cycles. These results suggest a great promise of the proposed particle architecture, which may have potential applications in the improvement of various energy storage materials.  相似文献   

18.
Dielectric capacitors play a vital role in advanced electronics and power systems as a medium of energy storage and conversion. Achieving ultrahigh energy density at low electric field/voltage, however, remains a challenge for insulating dielectric materials. Taking advantage of the phase transition in antiferroelectric (AFE) film PbZrO3 (PZO), a small amount of isovalent (Sr2+) / aliovalent (La3+) dopants are introduced to form a hierarchical domain structure to increase the polarization and enhance the backward switching field EA simultaneously, while maintaining a stable forward switching field EF. An ultrahigh energy density of 50 J cm−3 is achieved for the nominal Pb0.925La0.05ZrO3 (PLZ5) films at low electric fields of 1 MV cm−1, exceeding the current dielectric energy storage films at similar electric field. This study opens a new avenue to enhance energy density of AFE materials at low field/voltage based on a gradient-relaxor AFE strategy, which has significant implications for the development of new dielectric materials that can operate at low field/voltage while still delivering high energy density.  相似文献   

19.
Pure ionic conductors as solid‐state electrolytes are of high interest in electrochemical energy storage and conversion devices. They systematically involve only one ion as the charge carrier. The association of two mobile ionic species, one positively and the other negatively charged, in a specific network should strongly influence the total ion conduction. Nb5+‐ (4d0) and Ti4+‐based (3d0) derived‐perovskite frameworks containing Na+ and O2? as mobile species are investigated as mixed ion conductors by electrochemical impedance spectroscopy. The design of Na+ blocking layers via sandwiched pellet sintered by spark plasma sintering at high temperatures leads to quantified transport number of both ionic charge carriers tNa+ and tO2?. In the 350–700 °C temperature range, ionic conductivity can be tuned from major Na+ contribution (tNa+ = 88%) for NaNbO3 to pure O2? transport in NaNb0.9Ti0.1O2.95 phase. Such a Ti‐substitution is accompanied with a ≈100‐fold increase in the oxygen conductivity, approaching the best values for pure oxygen conductors in this temperature range. Besides the demonstration of tunable mixed ion conduction with quantifiable cationic and anionic contributions in a single solid‐state structure, a strategy is established from structural analysis to develop other architectures with improved mixed ionic conductivity.  相似文献   

20.
Solar‐blind deep ultraviolet (DUV) photodetectors have been a hot topic in recent years because of their wide commercial and military applications. A wide bandgap (4.68 eV) of ternary oxide Zn2GeO4 makes it an ideal material for the solar‐blind DUV detection. Unfortunately, the sensing performance of previously reported photodetectors based on Zn2GeO4 nanowires has been unsatisfactory for practical applications, because they suffer from long response and decay times, low responsivity, and quantum efficiency. Here, high‐performance solar‐blind DUV photodetectors are developed based on individual single‐crystalline Zn2GeO4 nanowires. The transport mechanism is discussed in the frame of the small polaron theory. In situ electrical characterization of individual Zn2GeO4 nanowires reveals a high gain under high energy electron beam. The devices demonstrate outstanding solar‐blind light sensing performances: a responsivity of 5.11 × 103 A W?1, external quantum efficiency of 2.45 × 106%, detectivity of ≈2.91 × 1011 Jones, τrise ≈ 10 ms, and τdecay ≈ 13 ms, which are superior to all reported Zn2GeO4 and other ternary oxide nanowire photodetectors. These results render the Zn2GeO4 nanowires particularly valuable for optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号