首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The rising threat of antimicrobial resistance is a crisis of a global scale. If not addressed, it can lead to health care system problems worldwide. This warrants alternative therapeutic approaches whose mechanism of action starkly differs from conventional antibiotic‐based therapies. Here, a multifunctional and stimuli‐responsive (NIR laser‐activated) antimicrobial platform is engineered by combining the intrinsic photothermal capability and excellent biocompatibility of polydopamine nanoparticles (PdNPs), with the membrane targeting and lytic activities of an antimicrobial peptide (AMP). The resulting PdNP‐AMP nanosystem can specifically target and destabilize the mechanical integrity of the outer membrane of Escherichia coli, as measured using the atomic force microscope. Furthermore, the laser‐induced nano‐localized heating of PdNP—in close proximity to the already compromised bacterial envelope—induces further membrane damage. This results in a more efficient, laser‐activated, bacterial killing action of PdNP‐AMP. The antimicrobial platform developed in this work is shown to be effective against a drug‐resistant E. coli. Overall, this work highlights the advantage and strength of combining multiple and coordinated biocidal mechanisms, into one nanomaterial‐based system and its promise in treating drug‐resistant pathogens.  相似文献   

2.
Small aldehyde molecule are demonstrated to induce cationic diphenylalanine to assemble into monodisperse enzyme‐responsive nanocarriers with high biocompatibility and excellent biodegradability. The formation of Schiff base covalent bond and accompanying π–π interaction of aromatic rings are found to be the mainly driving forces for the assembly of the nanocarriers. Interestingly, the nanocarriers show autofluorescence due to the n–π* transitions of C = N bonds, which lends them visually traceable property in living cells. Importantly, the nanocarriers can be taken in by cells and biodegraded in the cells. In addition, doxorubicin is easily loaded into the nanocarriers with high encapsulation amount, and its release can be triggered by tyrisin under physiological conditions. Noticeably, even at a very low drug concentration, the doxorubicin‐loaded nanocarriers still exhibit a much higher killing capacity of HeLa cells in vitro, compared to the equivalent‐dose free doxorubicin, indicating they have a great potential biomedical application.  相似文献   

3.
Microbial colonization on material surfaces is ubiquitous. Biofilms derived from surface‐colonized microbes pose serious problems to the society from both an economical perspective and a health concern. Incorporation of antimicrobial nanocompounds within or on the surface of materials, or by coatings, to prevent microbial adhesion or kill the microorganisms after their attachment to biofilms, represents an important strategy in an increasingly challenging field. Over the last decade, many studies have been devoted to preparing meta‐based nanomaterials that possess antibacterial, antiviral, and antifungal activities to combat pathogen‐related diseases. Herein, an overview on the state‐of‐the‐art antimicrobial nanosized metal‐based compounds is provided, including metal and metal oxide nanoparticles as well as transition metal nanosheets. The antimicrobial mechanism of these nanostructures and their biomedical applications such as catheters, implants, medical delivery systems, tissue engineering, and dentistry are discussed. Their properties as well as potential caveats such as cytotoxicity, diminishing efficacy, and induction of antimicrobial resistance of materials incorporating these nanostructures are reviewed to provide a backdrop for future research.  相似文献   

4.
5.
The present study aims to develop an implant coating releasing novel antimicrobial agents to prevent biomaterial‐associated infections. The LL‐37‐derived synthetic antimicrobial and anti‐biofilm peptides (SAAP)‐145 and SAAP‐276 exhibit potent bactericidal and anti‐biofilm activities against clinical and multidrug‐resistant Staphylococcus aureus strains by rapid membrane permeabilization, without inducing resistance. Injection of SAAP‐145, but not SAAP‐276, along subcutaneous implants in mice reduces S. aureus implant colonization by approximately 2 log, but does not reduce bacterial numbers in surrounding tissue. To improve their efficacy, SAAP‐145 and SAAP‐276 are incorporated in a polymer–lipid encapsulation matrix (PLEX) coating, providing a constant release of 0.6% daily up to 30 d after an initial burst release of >50%. In a murine model for biomaterial‐associated infection, SAAP‐145‐PLEX and SAAP‐276‐PLEX coatings significantly reduce the number of culture positive implants and show ≥3.5 and ≥1.5 log lower S. aureus implant and tissue colonization, respectively. Interestingly, these peptide coatings are also highly effective against multidrug‐resistant S. aureus, both reducing implant colonization by ≥2 log. SAAP‐276‐PLEX additionally reduces tissue colonization by 1 log. Together, the peptide‐releasing PLEX coatings hold promise for further development as an alternative to coatings releasing conventional antibiotics to prevent biomaterial‐associated infections.  相似文献   

6.
7.
Flexible large‐area organic light‐emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin‐doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are highly desired. Here an indium‐free anode is developed by a combinatorial study of zinc oxide (ZnO) and tin oxide (SnO2), both composed of earth‐abundant elements. The optimized Zn–Sn–O (ZTO) films have electron mobilities of up to 21 cm2 V?1 s?1, a conductivity of 245 S cm?1, and <5% absorptance in the visible range of the spectrum. The high electron mobilities and low surface roughness (<0.2 nm) are achieved by producing dense and void‐free amorphous layers as confirmed by transmission electron microscopy. These ZTO layers are evaluated for OLEDs in two anode configurations: i) 10 cm2 devices with ZTO/Ag/ZTO and ii) 41 cm2 devices with ZTO plus a metal grid. The ZTO layers are compatible with OLED processing steps and large‐area white OLEDs fabricated with the ZTO/grid anode show better performance than those with ITO/grid anodes. These results confirm that ZTO has the potential as an In‐free and Earth‐abundant alternative to ITO for large‐area flexible OLEDs.  相似文献   

8.
Multifunctional nanoprobes that can be applied for real‐time monitoring or precision treatment of tumors have received wide interest among researchers. However, most of these nanoprobes are obtained through chemical synthesis, and thereby may contain toxic residues or harmful reagents. In this article, a nano‐bismuth‐sphere‐cluster (Bi) is synthesized via a one‐step method (after an irradiation with ultra‐violet) and is then applied in dual‐mode computed tomography/photoacoustic imaging. Bismuth potassium citrate granules, which is a common gastric drug that is highly safe and has a low price (<1 China Yuan/g), is used as the only raw material. The results show that the Bi cluster has good stability with sizes of about 25–55 nm, and a photothermal conversion efficiency as high as 39.67%. After being adsorbed onto doxorubicin, the Bi cluster can be used directly in animal experiments. Due to the effect of enhanced permeability and retention, the probe can easily enter tumor cells. Drug release can be controlled by a near‐infrared laser and the acidic environment of tumor cells, which indicates that the combined chemo‐photothermal therapy is achieved. This work presents a new dual‐mode bio‐imaging and combined chemo‐photothermal therapeutic nanoprobe that can be applied in theragnostics for tumors.  相似文献   

9.
Dopant‐free hole transport materials (HTMs) are essential for commercialization of perovskite solar cells (PSCs). However, power conversion efficiencies (PCEs) of the state‐of‐the‐art PSCs with small molecule dopant‐free HTMs are below 20%. Herein, a simple dithieno[3,2‐b:2′,3′‐d]pyrrol‐cored small molecule, DTP‐C6Th, is reported as a promising dopant‐free HTM. Compared with commonly used spiro‐OMeTAD, DTP‐C6Th exhibits a similar energy level, a better hole mobility of 4.18 × 10?4 cm2 V?1 s?1, and more efficient hole extraction, enabling efficient and stable PSCs with a dopant‐free HTM. With the addition of an ultrathin poly(methyl methacrylate) passivation layer and properly tuning the composition of the perovskite absorber layer, a champion PCE of 21.04% is achieved, which is the highest value for small molecule dopant‐free HTM based PSCs to date. Additionally, PSCs using the DTP‐C6Th HTM exhibit significantly improved long‐term stability compared with the conventional cells with the metal additive doped spiro‐OMeTAD HTM. Therefore, this work provides a new candidate and effective device engineering strategy for achieving high PCEs with dopant‐free HTMs.  相似文献   

10.
Photoluminescent gold nanodots (Au NDs) are prepared via etching and codeposition of hybridized ligands, an antimicrobial peptide (surfactin; SFT), and 1‐dodecanethiol (DT), on gold nanoparticles (≈3.2 nm). As‐prepared ultrasmall SFT/DT–Au NDs (size ≈2.5 nm) are a highly efficient antimicrobial agent. The photoluminescence properties and stability as well as the antimicrobial activity of SFT/DT–Au NDs are highly dependent on the density of SFT on Au NDs. Relative to SFT, SFT/DT–Au NDs exhibit greater antimicrobial activity, not only to nonmultidrug‐resistant bacteria but also to the multidrug‐resistant bacteria. The minimal inhibitory concentration values of SFT/DT–Au NDs are much lower (>80‐fold) than that of SFT. The antimicrobial activity of SFT/DT–Au NDs is mainly due to the synergistic effect of SFT and DT–Au NDs on the disruption of the bacterial membrane. In vitro cytotoxicity and hemolysis analyses have revealed superior biocompatibility of SFT/DT–Au NDs than that of SFT. Moreover, in vivo methicillin‐resistant S. aureus–infected wound healing studies in rats show faster healing, better epithelialization, and are more efficient in the production of collagen fibers when SFT/DT–Au NDs are used as a dressing material. This study suggests that the SFT/DT–Au NDs are a promising antimicrobial candidate for preclinical applications in treating wounds and skin infections.  相似文献   

11.
12.
The “third‐generation” 3D graphene structures, T‐junction graphene micro‐wells (T‐GMWs) are produced on cheap polycrystalline Cu foils in a single‐step, low‐temperature (270 °C), energy‐efficient, and environment‐friendly dry plasma‐enabled process. T‐GMWs comprise vertical graphene (VG) petal‐like sheets that seemlessly integrate with each other and the underlying horizontal graphene sheets by forming T‐junctions. The microwells have the pico‐to‐femto‐liter storage capacity and precipitate compartmentalized PBS crystals. The T‐GMW films are transferred from the Cu substrates, without damage to the both, in de‐ionized or tap water, at room temperature, and without commonly used sacrificial materials or hazardous chemicals. The Cu substrates are then re‐used to produce similar‐quality T‐GMWs after a simple plasma conditioning. The isolated T‐GMW films are transferred to diverse substrates and devices and show remarkable recovery of their electrical, optical, and hazardous NO2 gas sensing properties upon repeated bending (down to 1 mm radius) and release of flexible trasparent display plastic substrates. The plasma‐enabled mechanism of T‐GMW isolation in water is proposed and supported by the Cu plasma surface modification analysis. Our GMWs are suitable for various optoelectronic, sesning, energy, and biomedical applications while the growth approach is potentially scalable for future pilot‐scale industrial production.  相似文献   

13.
Biodegradable biomaterials with intrinsically multifunctional properties such as high strength, photoluminescent ability (bioimaging monitoring), and antimicrobial activity (anti‐infection), as well as high osteoblastic differentiation ability, play a critical role in successful bone tissue regeneration. However, fabricating a biomaterial containing all these functions is still a challenge. Here, urethane cross‐linked intrinsically multifunctional silica‐poly(citrate) (CMSPC)‐based hybrid elastomers are developed by first one‐step polymerization and further chemical crosslinked using isocyanate. CMSPC hybrid elastomers demonstrate a high modulus of 976 ± 15 MPa, which is superior compared with most conventional poly(citrate)‐based elastomers. Hybrid elastomers show strong and stable intrinsic photoluminescent ability (emission 400–600 nm) due to the incorporation of silica phase. All elastomers exhibit high inherent antibacterial properties against Staphylococcus aureus. In addition, CMSPC hybrid elastomers significantly enhance the proliferation and metabolic activity of osteoblasts (MC3T3‐E1). CMSPC hybrid elastomers significantly promote the osteogenic differentiation of MC3T3‐E1 by improving alkaline phosphatase activity and calcium biomineralization deposits, as well as expressions of osteoblastic genes. These hybrid elastomers also show a minimal inflammatory response indicated by subcutaneous transplantation in vivo. These optimized structure and multifunctional properties make this hybrid elastomer highly promising for bone tissue regeneration and antiinfection and bioimaging applications.  相似文献   

14.
15.
Rechargeable Li batteries based on group VIA element cathodes, such as tellurium, are emerging due to their capability to provide equivalent theoretical volumetric capacity density to O and S, as well as an improved activity to react with Li. Herein, bifunctional and elastic carbon nanotube (CNT) aerogel is fabricated to combine with Te nanowires, yielding two types of binder/collector‐free Te cathodes to assemble Li‐Te batteries. The CNTs with high electronic conductivity and hollow porous structure enable stable electric contact and fast transportation of Li+, while trapping Te and Li2Te in its network, triggering fast and stable Li‐Te electrochemistry. Both cathodes are also provided with fine compressibility, helping to buffer their volume changes during lithiation/delithiation and improving electrode integrity. Both cathodes deliver high specific capacity, fine cycling stability, and favorable high‐rate capability, proving their competence in building high‐energy rechargeable Li‐ion batteries.  相似文献   

16.
An urgent need for developing new antimicrobial approaches has emerged due to the imminent threat of antimicrobial‐resistant (AMR) pathogens. Bacterial infection can induce a unique microenvironment with low pH, which can be employed to trigger drug release and activation. Here, a pH‐responsive polymer–drug conjugate (PDC) capable of combating severe infectious diseases and overcoming AMR is reported. The PDC is made of a unique biodegradable and biocompatible cationic polymer Hex‐Cys‐DET and streptomycin, a model antibiotic. The two components show strong antimicrobial synergy since the polymer can induce pores on the bacterial wall/membrane, thus significantly enhancing the transport of antibiotics into the bacteria and bypassing the efflux pump. The PDC is neutralized for enhanced biocompatibility under physiological conditions but becomes positively charged while releasing the antibiotic in infected tissues due to the low pH. Additionally, the polymer contains disulfide bonds in its main chain, which makes it biodegradable in mammalian cells and thus reducing the cytotoxicity. The PDC can effectively penetrate bacterial biofilms and be taken up by mammalian cells, thereby minimizing biofilm‐induced AMR and intracellular infections. The PDC exhibits remarkable antimicrobial activity in three in vivo infection models, demonstrating its broad‐spectrum antimicrobial capability and great potency in eliminating AMR infections.  相似文献   

17.
Interstitial fluid (ISF), as an emerging source of biomarkers, is unmistakably significant for disease diagnosis. Microneedles (MNs) provide a minimally invasive approach for extracting the desired molecules from ISF. However, existing MNs are limited by their capture efficiency and sensitivity, which impedes early disease diagnosis. Herein, an engineered wearable epidermal system is presented with a combination of reverse iontophoresis and MNs for rapid capture and sensing of Epstein‐Barr virus cell‐free DNA (an important biomarker of nasopharyngeal carcinoma). Owing to a dual‐extraction effect demonstrated by reverse iontophoresis and MNs, the engineered wearable platform successfully isolates the cell‐free DNA target from ISF within 10 min, with a threshold of 5 copies per µL and a maximum capture efficiency of 95.4%. The captured cell‐free DNA is also directly used in a recombinase polymerase amplification electrochemical microfluidic biosensor with a detection limit of 1.1 copies per µL (or a single copy). The experimental data from immunodeficient mouse models rationalizes the feasibility and practicality of the wearable system. Collectively, the developed method opens an innovative route for minimally invasive sampling of ISF for cell‐free DNA‐related cancer screening and prognosis.  相似文献   

18.
19.
Damage‐free encapsulation of molecular structures with functional nanolayers is crucial to protect nanodevices from environmental exposure. With nanoscale electronic, optoelectronic, photonic, sensing, and other nanodevices based on atomically thin and fragile organic matter shrinking in size, it becomes increasingly challenging to develop nanoencapsulation that is simultaneously conformal at atomic scale and does not damage fragile molecular networks, while delivering added device functionality. This work presents an effective, plasma‐enabled, potentially universal approach to produce highly conformal multifunctional organic films to encapsulate atomically thin graphene layers and metalorganic nanowires, without affecting their molecular structure and atomic bonding. Deposition of adamantane precursor and gentle remote plasma chemical vapor deposition are synergized to assemble molecular fragments and cage‐like building blocks and completely encapsulate not only the molecular structures, but also the growth substrates and device elements upon nanowire integration. The films are insulating, transparent, and conformal at sub‐nanometer scale even on near‐tip high‐curvature areas of high‐aspect‐ratio nanowires. The encapsulated structures are multifunctional and provide effective electric isolation, chemical and environmental protection, and transparency in the near‐UV–visible–near‐infrared range. This single‐step, solvent‐free remote‐plasma approach preserves and guides molecular building blocks thus opening new avenues for precise, atomically conformal nanofabrication of fragile nanoscale matter with multiple functionalities.  相似文献   

20.
Low‐Q‐whispering gallery modes (low‐Q‐WGM) can be used for label‐free detection of interactions between biomolecules, measuring their binding and release kinetics or for analysis of changes in the medium in real‐time. The main advantage of the low‐Q‐WGM approach over other label‐free methods is the possibility of measurements in small cavities as the method uses microparticles down to 6 µm as sensors. Commercially available dye‐doped microparticles that are used as low‐Q‐WGM sensors exhibit several drawbacks. Therefore, alternative particle types are developed and optimized as low‐Q‐WGM sensors. First, dye‐doped particles made of different materials are screened. The most critical parameter for WGM performance is the refractive index (RI) of sensor particles. Furthermore, surface roughness of particles, determined by scanning electron microscopy and atomic force microscopy, affects their performance as WGM microsensors. In the second test, fluorescent dyes immobilized on nonfluorescent particles by means of nanometer thick layer‐by‐layer (LbL) films are shown to generate a strong WGM signal. The LbL‐coated particles show remarkably less background fluorescence than dye‐doped particles and are easier to prepare. Finally, this article proposes rapid preparation methods for WGM microparticle sensors based on various parameters such as material type, RI, surface roughness, and number of coated polymer layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号