首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of highly efficient and low‐cost multifunctional electrocatalysts for the oxygen evolution reaction (OER), the oxygen reduction reaction (ORR), and the hydrogen evolution reaction is urgently required for energy storage and conversion applications, such as in Zn–air batteries and water splitting to replace very expansive noble metal catalysts. Here, the new core–shell NiFe@N‐graphite electrocatalysts with excellent electrocatalytic activity and stability toward OER and ORR are reported and the Ni0.5Fe0.5@N‐graphite electrocatalyst is applied as the air electrode in Zn–air batteries. The respective liquid Zn–air battery shows a large open‐circuit potential of 1.482 V and a small charge–discharge voltage gap of 0.12 V at 10 mA cm−2, together with excellent cycling stability even after 40 h at 20 mA cm−2. Interestingly, the all‐solid‐like Zn–air battery thus derived shows a highly desired mechanical flexibility, whereby little change is observed in the voltage when bent into different angles. Using the same Ni0.5Fe0.5@N‐graphite electrode, a self‐driven water‐splitting device, which is powered by two Zn–air batteries in‐series, is constructed. The present study opens a new opportunity for the rational design of metal@N‐graphite‐based catalysts of core–shell structures for electrochemical catalysts and renewable energy applications.  相似文献   

2.
Development of efficient, low‐cost, and durable electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is of significant importance for many electrochemical devices, such as rechargeable metal–air batteries, fuel cells, and water electrolyzers. Here, a novel approach for the synthesis of a trifunctional electrocatalyst derived from iron/cobalt‐containing polypyrrole (PPy) hydrogel is reported. This strategy relies on the formation of a supramolecularly cross‐linked PPy hydrogel that allows for efficient and homogeneous incorporation of highly active Fe/Co–N–C species. Meanwhile, Co nanoparticles are also formed and embedded into the carbon scaffold during the pyrolysis process, further promoting electrochemical activities. The resultant electrocatalyst exhibits prominent catalytic activities for ORR, OER, and HER, surpassing previously reported trifunctional electrocatalysts. Finally, it is demonstrated that the as‐obtained trifunctional electrocatalyst can be used for electrocatalytic overall water splitting in a self‐powered manner under ambient conditions. This work offers new prospects in developing highly active, nonprecious‐metal‐based electrocatalysts in electrochemical energy devices.  相似文献   

3.
Hydrogen generation from water splitting driven by electric/solar energy is highly desirable, which requires efficient and robust bifunctional electrocatalysts for both hydrogen and oxygen evolution reactions. 2D porous hybrids with attractive chemical and structural properties are the first‐class candidates for water splitting, while control over efficient and modulable synthesis remains a huge challenge. This work demonstrates a zeolitic imidazolate framework‐67 (ZIF‐67) nanoplate self‐template approach to fabricate 2D porous oxygen‐incorporated cobalt phosphide (CoPO) ultrathin nanosheets. The synthesis starts with the oriented growth of ZIF‐67 nanoplates along [211] crystal plane, followed by oxidation/phosphorization processes for pore generation and O/P coincorporation in the hybrid. The resultant 2D porous CoPO nanosheets afford very small voltages of 1.52 and 1.98 V for overall water splitting at 10 and 200 mA cm?2, respectively. This excellent bifunctionality further provides the basis for photovoltage‐driven water splitting at a Faradaic efficiency of 97.6%. These findings offer a general strategy for rational design and modulation of 2D porous catalysts for various electrocatalytic and other applications.  相似文献   

4.
The simultaneous and efficient evolution of hydrogen and oxygen with earth‐abundant, highly active, and robust bifunctional electrocatalysts is a significant concern in water splitting. Herein, non‐noble metal‐based Ni–Co–S bifunctional catalysts with tunable stoichiometry and morphology are realized. The engineering of electronic structure and subsequent morphological design synergistically contributes to significantly elevated electrocatalytic performance. Stable overpotentials (η10) of 243 mV (vs reversible hydrogen electrode) for oxygen evolution reaction (OER) and 80 mV for hydrogen evolution reaction (HER), as well as Tafel slopes of 54.9 mV dec?1 for OER and 58.5 mV dec?1 for HER, are demonstrated. In addition, density functional theory calculations are performed to determine the optimal electronic structure via the electron density differences to verify the enhanced OER activity is related to the Co top site on the (110) surface. Moreover, the tandem bifunctional NiCo2S4 exhibit a required voltage of 1.58 V (J = 10 mA cm?2) for simultaneous OER and HER, and no obvious performance decay is observed after 72 h. When integrated with a GaAs solar cell, the resulting photoassisted water splitting electrolyzer shows a certified solar‐to‐hydrogen efficiency of up to 18.01%, further demonstrating the feasibility of engineering protocols and the promising potential of bifunctional NiCo2S4 for large‐scale overall water splitting.  相似文献   

5.
The main bottlenecks of aqueous rechargeable Ni–Zn batteries are their relatively low energy density and poor cycling stability, mainly arising from the low capacity and inferior reversibility of the current Ni‐based cathodes. Additionally, the complicated and difficult‐to‐scale preparation procedures of these cathodes are not promising for large‐scale energy storage. Here, a facile and cost‐effective ultrasonic‐assisted strategy is developed to efficiently activate commercial Ni foam as a robust cathode for a high‐energy and stable aqueous rechargeable Ni–Zn battery. 3D Ni@NiO core–shell electrode with remarkably boosted reactivity and an area of 300 cm2 is readily obtained by this ultrasonic‐assisted activation method (denoted as SANF). Benefiting from the in situ formation of electrochemically active NiO and porous 3D structure with a large surface area, the as‐fabricated SANF//Zn battery presents ultrahigh capacity (0.422 mA h cm?2) and excellent cycling durability (92.5% after 1800 cycles). Moreover, this aqueous rechargeable SANF//Zn battery achieves an impressive energy density of 15.1 mW h cm?3 (0.754 mW h cm?2) and a peak power density of 1392 mW cm?3, outperforming most reported aqueous rechargeable energy‐storage devices. These findings may provide valuable insights into designing large‐scale and high‐performance 3D electrodes for aqueous rechargeable batteries.  相似文献   

6.
Development of easy‐to‐make, highly active, and stable bifunctional electrocatalysts for water splitting is important for future renewable energy systems. Three‐dimension (3D) porous Ni/Ni8P3 and Ni/Ni9S8 electrodes are prepared by sequential treatment of commercial Ni‐foam with acid activation, followed by phosphorization or sulfurization. The resultant materials can act as self‐supported bifunctional electrocatalytic electrodes for direct water splitting with excellent activity toward oxygen evolution reaction and hydrogen evolution reaction in alkaline media. Stable performance can be maintained for at least 24 h, illustrating their versatile and practical nature for clean energy generation. Furthermore, an advanced water electrolyzer through exploiting Ni/Ni8P3 as both anode and cathode is fabricated, which requires a cell voltage of 1.61 V to deliver a 10 mA cm?2 water splitting current density in 1.0 m KOH solution. This performance is significantly better than that of the noble metal benchmark—integrated Ni/IrO2 and Ni/Pt–C electrodes. Therefore, these bifunctional electrodes have significant potential for realistic large‐scale production of hydrogen as a replacement clean fuel to polluting and limited fossil‐fuels.  相似文献   

7.
Rechargeable aqueous Zn‐based batteries show great potential for energy storage systems due to their good reliability, low cost, environmental friendliness, etc. However, the capacity of the most studied Mn‐, V‐, and Prussian blue analog‐based Zn‐ion batteries (the type with Zn2+ insertion) and the other type Zn‐based batteries without Zn2+ insertion (such as metal Ag and Ni or Co oxides/hydroxides) does not exceed 400 mAh g?1. Cu is a promising cathode with a high theoretical capacity of 844 mAh g?1 based on its unique two‐electron transfer process (Cu0 ? Cu2+), but Cu–Zn batteries have been impractical to recharge since they was invented by Daniell in 1836. By adjusting the solubility of Cu2+ in an alkaline solution, a rechargeable high‐performance Cu–Zn battery is achieved. A high specific capacity of 718 mAh g?1 is obtained for the prepared Cu clusters. Moreover, commercial Cu foil is explored for direct use as the cathode material and shows high capacity and stability through a simple self‐activation process. This rechargeable Cu–Zn battery is attractive for application due to its high capacity, simple synthesis method, environmental friendliness, and low cost.  相似文献   

8.
Development of low‐cost, high‐performance, and bifunctional electrocatalysts for water splitting is essential for renewable and clean energy technologies. Although binary phosphides are inexpensive, their performance is not as good as noble metals. Adding a third metal element to binary phosphides (Ni‐P, Co‐P) provides the opportunity to tune their crystalline and electronic structures and thus their electrocatalytic properties. Here, ternary phosphide (NiCoP) films with different nickel to cobalt ratios via an electrodeposition technique are synthesized. The films have a triple‐layered and hierarchical morphology, consisting of nanosheets in the bottom layer, ≈90–120 nm nanospheres in the middle layer, and larger spherical particles on the top layer. The ternary phosphides exhibit versatile activities that are strongly dependent on the Ni/Co ratios and Ni0.51Co0.49P film is found to have the best electrocatalytic activities for both hydrogen evolution reactions and oxygen evolution reactions. The high performance of the ternary phosphide film is attributed to enhanced electric conductivity so that reaction kinetics is accelerated, enlarged surface area due to the hierarchical and three‐layered morphology, and increased local electric dipole so that the energy barrier for the water splitting reaction is lowered.  相似文献   

9.
The advent of electrochromic aqueous batteries represents a promising trend in the development of smart and environmentally friendly energy storage devices. However, it remains a great challenge to integrate electrochromic, flexible, and patterned features into a single battery unit through a simple operation. Herein, an entirely new class of hetero‐polyacid‐based underwater adhesives is designed and synthesized by combining the redox properties of hetero‐polyacids and the water‐resistant binding of adhesives in single system. The hybrid underwater adhesives not only serve as printable electrode coatings in aqueous solution but also offer unique electrochromic feature for guiding the convenient fabrication of self‐powered electrochromic aqueous battery. The reversible discharging and H2O2 assistant charging behavior is also demonstrated. This kind of wet and electrochromic adhesive with excellent toleration of mechanical deformation offers great promise in developing flexible and smart energy storage configuration, which provides a user‐device interface platform allowing one to evaluate the battery's charging state based on the naked eye–visible change in color.  相似文献   

10.
A recent approach for solar‐to‐hydrogen generation has been water electrolysis using efficient, stable, and inexpensive bifunctional electrocatalysts within strong electrolytes. Herein, the direct growth of 1D NiCo2S4 nanowire (NW) arrays on a 3D Ni foam (NF) is described. This NiCo2S4 NW/NF array functions as an efficient bifunctional electrocatalyst for overall water splitting with excellent activity and stability. The 3D‐Ni foam facilitates the directional growth, exposing more active sites of the catalyst for electrochemical reactions at the electrode–electrolyte interface. The binder‐free, self‐made NiCo2S4 NW/NF electrode delivers a hydrogen production current density of 10 mA cm–2 at an overpotential of 260 mV for the oxygen evolution reaction and at 210 mV (versus a reversible hydrogen electrode) for the hydrogen evolution reaction in 1 m KOH. This highly active and stable bifunctional electrocatalyst enables the preparation of an alkaline water electrolyzer that could deliver 10 mA cm–2 under a cell voltage of 1.63 V. Because the nonprecious‐metal NiCo2S4 NW/NF foam‐based electrodes afford the vigorous and continuous evolution of both H2 and O2 at 1.68 V, generated using a solar panel, they appear to be promising water splitting devices for large‐scale solar‐to‐hydrogen generation.  相似文献   

11.
The exploration of earth‐abundant and high‐efficiency bifunctional electrocatalysts for overall water splitting is of vital importance for the future of the hydrogen economy. Regulation of electronic structure through heteroatom doping represents one of the most powerful strategies to boost the electrocatalytic performance of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, a rational design of O‐incorporated CoP (denoted as O‐CoP) nanosheets, which synergistically integrate the favorable thermodynamics through modification of electronic structures with accelerated kinetics through nanostructuring, is reported. Experimental results and density functional theory simulations manifest that the appropriate O incorporation into CoP can dramatically modulate the electronic structure of CoP and alter the adsorption free energies of reaction intermediates, thus promoting the HER and OER activities. Specifically, the optimized O‐CoP nanosheets exhibit efficient bifunctional performance in alkaline electrolyte, requiring overpotentials of 98 and 310 mV to deliver a current density of 10 mA cm?2 for HER and OER, respectively. When served as bifunctional electrocatalysts for overall water splitting, a low cell voltage of 1.60 V is needed for achieving a current density of 10 mA cm?2. This proposed anion‐doping strategy will bring new inspiration to boost the electrocatalytic performance of transition metal–based electrocatalysts for energy conversion applications.  相似文献   

12.
Additional surgeries for implantable biomedical devices are inevitable to replace discharged batteries, but repeated surgeries can be a risk to patients, causing bleeding, inflammation, and infection. Therefore, developing self‐powered implantable devices is essential to reduce the patient's physical/psychological pain and financial burden. Although wireless communication plays a critical role in implantable biomedical devices that contain the function of data transmitting, it has never been integrated with in vivo piezoelectric self‐powered system due to its high‐level power consumption (microwatt‐scale). Here, wireless communication, which is essential for a ubiquitous healthcare system, is successfully driven with in vivo energy harvesting enabled by high‐performance single‐crystalline (1 ? x )Pb(Mg1/3Nb2/3)O3?(x )Pb(Zr,Ti)O3 (PMN‐PZT). The PMN‐PZT energy harvester generates an open‐circuit voltage of 17.8 V and a short‐circuit current of 1.74 µA from porcine heartbeats, which are greater by a factor of 4.45 and 17.5 than those of previously reported in vivo piezoelectric energy harvesting. The energy harvester exhibits excellent biocompatibility, which implies the possibility for applying the device to biomedical applications.  相似文献   

13.
Converting environmental “waste energies” into electricity via a natural process is an ideal strategy for environmental energy harvesting and supplying power for distributed energy‐consuming devices. This paper reports that evaporation‐driven water flow within an all‐printed porous carbon film can reliably generate sustainable voltage up to 1 V with a power density of ≈8.1 µW cm?3 under ambient conditions. The output performance of the device can be easily scaled up and used to power low‐power consumption electronic devices or for energy storage. Furthermore, the device is successfully used without electric storage as a direct power source for electrodeposition of silver microstructures. Because of the ubiquity of water evaporation in nature and the low cost of materials involved, the study presents a novel avenue to harvest ambient energy and has potential applications in low‐cost, green, self‐powered devices and systems.  相似文献   

14.
Solar‐to‐hydrogen (STH) conversion through unassisted artificial photosynthesis (APS) devices is one of the promising and environmentally friendly strategies for sustainable development. However, the practical large‐scale application of the unassisted APS devices is impeded by the need for expensive noble metal‐based catalysts in photovoltaics and/or electrolyzers. Herein, well‐aligned 2D NixSy nanowalls (2D NixSy NWs) on a 3D nitrogen‐doped graphene foam (3D NGF) are synthesized and further employed it in unassisted APS. Due to the positive synergistic effect between the highly electrocatalytic activity of NixSy NW and excellent conductivity of NGF, this low cost material of (2D/3D) NixSy NW/NGF is highly efficient as a multifunctional catalyst in various applications: a counterelectrode for dye‐sensitized solar cell (DSSC) and a “bifunctional” electrocatalyst for oxygen and hydrogen evolution for electrocatalytic overall water splitting. Furthermore, three NixSy NW/NGF‐based DSSCs as a tandem cell for unassisted solar‐driven overall water splitting is connected, using NixSy NW/NGF itself on nickel foams as the anode and cathode. Impressively, such integrated photovoltaic‐electrolyzer APS device can achieve an STH efficiency of 3.2% with an excellent stability and low cost. This work opens an avenue to advanced multifunctional materials for the low‐cost and unassisted solar‐driven overall water splitting.  相似文献   

15.
Traditional triboelectric nanogenerator (TENG)‐based self‐powered chemical‐sensing systems are demonstrated by measuring the triboelectric effect of the sensing materials altered by the external stimulus. However, the limitations of triboelectric sensing materials and instable outputs caused by ambient environment significantly restrict their practical applications. In this work, a stable and reliable self‐powered chemical‐sensing system is proposed by coupling triboelectric effect and chemoresistive effect. The whole system is constructed as the demo of a self‐powered vehicle emission test system by connecting a vertical contact–separate mode TENG as energy harvester with a series‐connection resistance‐type gas sensor as exhaust detector and the parallel‐connection commercial light‐emitting diodes (LEDs) as alarm. The output voltage of TENG varies with the variable working states of the gas sensor and then directly reflects on the on/off status of the LEDs. The working mechanism can be ascribed to the specific output characteristics of the TENG tuned by the load resistance of the gas sensor, which is responded to the gas environment. This self‐powered sensing system is not affected by working frequency and requires no external power supply, which is favorable to improve the stability and reliability for practical application.  相似文献   

16.
Dielectric elastomers are a type of actuator materials that exhibit excellent performance as artificial muscles, but a high driving voltage is required for their operation. By using the amazingly high output voltage generated from a triboelectric nanogenerator (TENG), a thin film dielectric elastomer actuator (DEA) can be directly driven by the contact‐separation motion of TENG, demonstrating a self‐powered actuation system. A TENG with a tribo surface area of 100 cm2 can induce an expansion strain of 14.5% for the DEA samples (electrode diameter of 0.6 cm) when the system works stably within the contact‐separation velocity ranging from 0.1 to 10 cm s?1. Finally, two simple prototypes of an intelligent switch and a self‐powered clamper based on the TENG and DEA are demonstrated. These results prove that the dielectric elastomer is an ideal material to work together with TENG and thereby the fabricated actuation system can potentially be applied to the field of electronic skin and soft robotics.  相似文献   

17.
Practical electrochemical water splitting requires cost‐effective electrodes capable of steadily working at high output, leading to the challenges for efficient and stable electrodes for the oxygen evolution reaction (OER). Herein, by simply using conductive FeS microsheet arrays vertically pre‐grown on iron foam (FeS/IF) as both substrate and source to in situ form vertically aligned NiFe(OH)x nanosheets arrays, a hierarchical electrode with a nano/micro sheet‐on‐sheet structure (NiFe(OH)x/FeS/IF) can be readily achieved to meet the requirements. Such hierarchical electrode architecture with a superhydrophilic surface also allows for prompt gas release even at high output. As a result, NiFe(OH)x/FeS/IF exhibits superior OER activity with an overpotential of 245 mV at 50 mA cm?2 and can steadily output 1000 mA cm?2 at a low overpotential of 332 mV. The water‐alkali electrolyzer using NiFe(OH)x/FeS/IF as the anode can deliver 10 mA cm?2 at 1.50 V and steadily operate at 300 mA cm?2 with a small cell voltage for 70 h. Furthermore, a solar‐driven electrolyzer using the developed electrode demonstrates an exceptionally high solar‐to‐hydrogen efficiency of 18.6%. Such performance together with low‐cost Fe‐based materials and facile mass production suggest the present strategy may open up opportunities for rationally designing hierarchical electrocatalysts for practical water splitting or diverse applications.  相似文献   

18.
Tremendous research efforts have been focused on the development of a water splitting system (WSS) to harvest hydrogen fuels, but currently available WSSs are complicated and cost-ineffective mainly due to the applications of noble platinum or different electrocatalysts. Herein, a novel WSS comprising electricity generation from solar panels, electricity storage in rechargeable zinc–air batteries (ZABs), and water splitting in electrolyzers, enabled by hybrid cobalt nanoparticles/N-doped carbon embellished on carbon cloth (Co–NC@CC) as multifunctional platinum-free electrocatalysts is reported. Consequently, the Co–NC@CC electrode presents excellent trifunctional electrocatalytic activity with an onset potential of 0.94 V for oxygen reduction reaction, and an overpotential of 240 and 73 mV to achieve a current density of 10 mA cm−2 for oxygen and hydrogen evolution reactions, respectively. For a proof-of-concept application, a rechargeable ZAB assembled from the high-performance Co–NC@CC air cathode exhibits a high open circuit potential of 1.63 V and a superior energy density of 1051 Wh kg−1Zn. Furthermore, an overall water splitting electrolyzer constructed by the symmetrical Co–NC@CC electrodes delivers a current density of 10 mA cm−2 at a low cell voltage of 1.57 V. Such a solar-powered WSS can harvest hydrogen day and night, demonstrating a potential for application in sustainable renewable energy.  相似文献   

19.
Highly crystallized ZnO–Ga2O3 core–shell heterostructure microwire is synthesized by a simple one‐step chemical vapor deposition method, and constructed into a self‐powered solar‐blind (200–280 nm) photodetector with a sharp cutoff wavelength at 266 nm. The device shows an ultrahigh responsivity (9.7 mA W?1) at 251 nm with a high UV/visible rejection ratio (R 251 nm/R 400 nm) of 6.9 × 102 under zero bias. The self‐powered device has a fast response speed with rise time shorter than 100 µs and decay time of 900 µs, respectively. The ultrahigh responsivity, high UV/visible rejection ratio, and fast response speed make it highly suitable in practical self‐powered solar‐blind detection. Additinoally, this microstructure heterojunction design method would provide a new approach to realize the high‐performance self‐powered photodetectors.  相似文献   

20.
Triboelectric nanogenerators (TENG) are able to convert mechanical energy into electricity. In this work, a self‐powered electrochemical synthesis circle is designed, in which the electrode material of the TENG, polypyrrole (PPy), is prepared by the pulse output of the PPy‐based TENG itself. The TENG based on PPy from self‐powered synthesis (SPSPPy) presents a competitive performance compared to those made from commercial pulse sources. A supercapacitor that is fabricated from SPSPPy has a far superior performance than that synthesized by the conventional galvanostatic method. Furthermore, a self‐charging power system that integrates a TENG and a supercapacitor is demonstrated to drive an electronic device sustainably. Moreover, the polymerization efficiency is optimized in TENG‐based electrochemical synthesis because its high voltage can sustain multiple reactors simultaneously. Its upper limit is theoretically analyzed for optimal energy utility, and a maximum number of 39 reactors can be powered experimentally. Hence, TENG is validated as an effective pulse generator for the synthesis of PPy as well as other electrochemical technology, and this work greatly improves the understandings of TENG‐based self‐powered electrochemical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号