首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Very recently, vertically aligned nanocomposite (VAN) thin films have served as an intriguing platform to obtain significant insights of the fundamental physics and achieve novel functionalities for potential technological applications. In this review article, we have investigated the lattice mismatch and vertical interfacial coupling in representative VAN systems for probing strain engineering in the vertical direction. Systematic studies of ferroelectricity, low field magnetoresistance and magnetoelectric coupling in VAN architectures have been reviewed and compared. The enhancement and tunability of the physical properties are attributed to the effective strain-, phase- and interface- couplings in VAN films. In the end, important and promising research directions in this field are proposed, including understanding the growth mechanisms of VAN structures, and creating more effective couplings for enhanced functionalities and ultimate device applications.  相似文献   

2.
Two-phase nanocomposite heteroepitaxial films with vertical microstructures hold great promise for various (multi)functional (e.g., multiferroic) electronic device applications. With the aim of creating addressable arrays, it is necessary to form spontaneously ordered structures over large areas. However, such structures have not, so far, been demonstrated. We have recently produced remarkable spontaneously ordered phase assemblies and find that these structures form concomitantly with 2-D vertical strain control, i.e., strain in the 2 phases is controlled along the vertical interface between them rather than being influenced by the substrate. In this paper, we report on our findings in the BiFeO3 and BaTiO3 ferroelectric systems.  相似文献   

3.
Varying the film thickness is a precise route to tune the interfacial strain to manipulate the properties of the multiferroic materials.Here,to explore the effects of the interfacial strain on the properties of the multiferroic BiFeO_3films,we investigated thickness-dependent structural and polarization evolutions of the BiFeO_3 films.The epitaxial growth with an atomic stacking sequence of BiO/TiO_2 at the interface was confirmed by scanning transmission electron microscopy.Combining X-ray diffraction experiments and first-principles calculations,a thickness-dependent structural evolution was observed from a fully strained tetragonality to a partially relaxed one without any structural phase transition or rotated twins.The tetragonality(c/a) of the BiFeO_3 films increases as the film thickness decreases,while the polarization is in contrast with this trend,and the size effect including the depolarization field plays a crucial role in this contradiction in thinner films.These findings offer an alternative strategy to manipulate structural and polarization properties by tuning the interfacial strain in epitaxial multiferroic thin films.  相似文献   

4.
a-C:H and a-C:H/SiOx nanocomposite thin films were deposited on silicon, aluminum and polyimide substrates at 25 °C in an asymmetric 13.56 MHz r.f.-driven plasma reactor under heavy ion bombardment. Fourier transform infrared spectra of the films indicate that the nanocomposite filmsappears to consist of an atomic scale random network of a-C:H and SiOx. Raman spectroscopy revealed that the sp2 carbon fraction in the nanocomposite film was reduced compared with the a-C:H film. The intrinsic stress of both films increased with increasing negative bias voltage (−Vdc) at the substrate. However, the nanocomposite films exhibited lower intrinsic stress compared w with a-C:H-only films. Especially, a thin SiOx-rich interlayer was very effective in reducing the film stress and enhancing the bonding strength at the interface. The interlayer allowed deposition of thick films of up to 5 μm. Also, the nanocomposite films were stable in 0.1 M NaOH solution and showed good microhardness.  相似文献   

5.
Two-phase (La(0.7)Sr(0.3)MnO(3))(0.5):(CeO(2))(0.5) (LSMO:CeO(2)) heteroepitaxial nanocomposite films were grown on SrTiO(3) (STO) (001) by pulsed laser deposition (PLD). X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that LSMO:CeO(2) films epitaxially grow on STO as self-assembled vertically aligned nanocomposite (VAN). Magnetic and magnetotransport measurements demonstrate that the LSMO phase in the VAN structure behaves differently from its epitaxial single-phase counterpart, e.g. greatly enhanced coercivity (H(C)) and low-field magnetoresistance (LFMR). The enhanced properties in the VAN system are attributed to the interaction between the perovskite and the secondary phase or phase boundary. The results suggest that the growth of functional oxide in another oxide matrix with vertical heteroepitaxial form is a promising approach to achieve new functionality that may not be easily realized in the single epitaxial phase.  相似文献   

6.
Currently, the limitations of conventional methods for fabricating metamaterials composed of well‐aligned nanoscale inclusions either lack the necessary freedom to tune the structural geometry or are difficult for large‐area synthesis. In this Communication, the authors propose a fabrication route to create well‐ordered silver nano forest/ceramic composite single‐layer or multi‐layer vertically stacked structures, as a distinctive approach to make large‐area nanoscale metamaterials. To take advantage of direct growth, the authors fabricate single‐layer nanocomposite films with a well‐defined sub‐5 nm interwire gap and an average nanowire diameter of ≈3 nm. Further, artificially constructed multilayer metamaterial films are easily fabricated by vertical integration of different single‐layer metamaterial films. Based upon the thermodynamics as well as thin film growth dynamics theory, the growth mechanism is presented to elucidate the formation of such structure. Intriguing steady and transient optical properties in these assemblies are demonstrated, owing to their nanoscale structural anisotropy. The studies suggest that the self‐organized nanocomposites provide an extensible material platform to manipulate optical response in the region of sub‐5 nm scale.  相似文献   

7.
We demonstrate a general approach for growing vertically aligned, single-crystalline nanowires of any material on arbitrary substrates by using plasma-sputtered Au/Pd thin films as a catalyst through the vapor-liquid-solid process. The high-energy sputtered Au/Pd atoms form a reactive interface with the substrate forming nanoclusters which get embedded in the substrate, thus providing mechanical stability for vertically aligned nanowire growth. We demonstrate that our approach for vertically aligned nanowire growth is generic and can be extended to various complex substrates such as conducting indium tin oxide.  相似文献   

8.
Electromechanically responsive polymer nanocomposite thin films can provide embedded microscale sensing elements for unobtrusive monitoring of strain, torque and pressure particularly for composite structures. Thin nanocomposite carbon–polyimide films with thicknesses up to 90 μm were produced with carbon contents that yield semiconducting behaviour attributable to distance dependent electron hopping between isolated nanoparticles. The tensile modulus and the strain at break indicated minimum interaction between polymer and nanoparticle surfaces. A decreasing storage modulus with increasing temperature indicated increasing free volume inducing polymer chain motions.  相似文献   

9.
Silicon carbide-titanium carbide (SiC-TiC) nanocomposite thin films were prepared by radiofrequency magnetron sputtering using SiC-TiC composite targets fabricated by spark plasma sintering. The SiC thin films were amorphous at substrate temperatures below 573 K and crystallized in the cubic crystal system (3C) at substrate temperatures greater than 773 K. Cubic SiC-TiC nanocomposite thin films, which contain a mixture of 3C-SiC and B1-TiC phases, were obtained at a TiC content of greater than 20 mol%. The amorphous films possessed a dense cross-section and a smooth surface. The morphology of the SiC-TiC nanocomposite thin films changed from granular to columnar with increasing substrate temperature. The SiC-TiC nanocomposite thin films prepared at TiC content of 70-80 mol% and substrate temperature of 573 K showed the highest hardness of 35 GPa.  相似文献   

10.
Two-phase, vertical nanocomposite heteroepitaxial films hold great promise for (multi)functional device applications. In order to achieve practical devices, a number of hurdles need to be overcome, including the creation of ordered structures (and their formation on a large scale), achieving different combinations of materials and control of strain coupling between the phases. Here we demonstrate major advances on all these fronts: remarkable spontaneously ordered structures were produced in newly predicted compositions, vertical strain was proven to dominate the strain state in films above 20 nm thickness and strain manipulation was demonstrated by selection of phases with the appropriate elastic moduli. The work opens up a new avenue for strain control in relatively thick films and also promises new forms of ordered nanostructures for multifunctional applications.  相似文献   

11.
Structures and mechanical properties of thin films of the Nb–Al–N system produced by magnetron sputtering of targets from niobium and aluminum in the Ar–N2 atmosphere have been studied. It has been shown that as the aluminum concentration increases, the structure of a thin film transforms from the nanocrystalline into the nanocomposite one, which consists of nanocrystallites of solid solutions in a matrix of amorphous aluminum nitride. Hardness, elastic modulus, and yield strength of Nb–Al–N thin films have been studied by nanoindentation in the mode of continuous control of the contact stiffness. It has been found that the transition of the structures of Nb–Al–N thin films from the nanocrystalline to the nanocomposite structures results in an increase of hardness and decrease of elastic modulus due to the formation of a thin amorphous interlayer between grains of nanocrystallites. A high hardness to elastic modulus ratio of Nb–Al–N nanocomposite thin films indicates that the films are a promising material for wear-resistant coatings.  相似文献   

12.
In this study, we synthesized gold-titania nanocomposite thin films by using mesoporous titania thin films formed on indium tin oxide substrates as templates. The pore structure of our mesoporous titania thin films can be described as a periodic 3D pore network by interconnecting 7 nm sized cages. Electrochemical deposition of gold into the pores led to gold-titania nanocomposite films. Both gold and titania form continuous 3D network structures with internal periodicity. Because of the low conductivity of indium tin oxide substrate, the deposited gold formed isotropic islands. The absorption spectrum of the resultant gold-titania nanocomposite thin films showed two peaks, one at 640 nm and the other over a broad range of wavelengths longer than 1500 nm. These peaks grow with the increase of the deposition time but do not change the positions. The optical properties were explained in terms of the unique nanostructure of our gold-titania nanocomposite film.  相似文献   

13.
This paper characterizes the fracture toughness of layer-by-layer (LBL) manufactured thin films with elastic polyurethane, a tough polymer, and poly(acrylic acid) as a stiffening agent. A single-edge-notch tension (SENT) specimen is used to study mode I crack propagation as a function of applied loading. Experimental results for the full-field time histories of the strain maps in the fracturing film have been analyzed to obtain R-curve parameters for the nanocomposite. In particular, by using the strain maps, details of the traction law are measured. A validated finite strain phenomenological visco-plastic constitutive model is used to characterize the nanocomposite film while a discrete cohesive zone model (DCZM) is implemented to model the fracture behavior. The LBL manufactured nanocomposite is found to display a higher fracture toughness than the unstiffened base polymer.  相似文献   

14.
《Materials Letters》2006,60(13-14):1622-1624
A crown ether derivative (4′-aminobenzo-15-crown-5 hydrotetrafluoroborate) can mediate the self-assembly of silver nanoprisms at the liquid/liquid interface in the form of a stable hybrid nanocomposite film. The metallic luster of the interfacial film results from the electronic coupling of Ag nanoprisms, suggesting the formation of closely packed nanoprism thin films. The interfacial film of nanoprisms could be transferred to solid substrates as a Langmuir–Blodgett film. The properties of films were studied by UV–vis spectroscopy and transmission electron microscopy.  相似文献   

15.
Two‐phase self‐assembled nanocomposite films have attracted increasing interest in recent years because of their potential applications in novel technological devices. However, tuning the physical properties by modulating the microstructure of self‐assembled nanocomposite films is still a challenge. In this study, epitaxial La0.7Ca0.3MnO3:NiO nanocomposite films are synthesized by pulsed laser deposition. In the composite films with a NiO ratio of 50%, microstructures with nanomultilayer, nanogranular, and nanocolumnar characteristics are successfully obtained by using different growth modes. The metal–insulator transition and magnetic transition can be separately modulated by tuning the microstructures. By precisely modulating the microstructure, a significantly enhanced low‐field magnetoresistance (>80% at a magnetic field of 1 T) with an unusual plateau in the temperature interval from 10 to 110 K is realized in these films, which is expected to be applicable in field‐sensor devices that can be operated in a wide temperature range.  相似文献   

16.
This paper is focused on the synthesis of nanocomposite Polypyrrole–Bromoaluminium phthalocyanine (PPy-BrAlPc). Morphology of prepared nano-compositethin films by electron beam evaporation technique have been well characterized by Field Emission-Scanning Electron Microscopy (FESEM). FESEM shows that the grain sizes are increased with increase in concentration of pyrrole. The optical properties of nanocomposite thin films have been investigated using a spectrophotometric measurement of absorbance in the wavelength range 300–800 nm. Absorption spectra of the films show B-band in the UV region followed by Q-band in the visible region. Moreover, the optical band gaps of the thin films are evaluated. It is found that the energy of the optical band gap increases as the concentration of Bromo-aluminium phthalocyanine increases.  相似文献   

17.
Nanocomposite films consisting of a sol-gel hybrid organic-inorganic matrix incorporating ZnS nanocrystals (NCs) have been developed. The nanocomposites films have high visible transparency, enhanced refractive index and photochemical stability. Usage of the diphenyldimethoxysilane and of the ZnS NCs at different concentrations allowed tuning the optical characteristics. Hybrid matrix, NCs and nanocomposite films were characterized by X-Ray Diffraction, High Resolution Transmission Microscopy, spectroscopic ellipsometry, UV-visible and Fourier Transform Infrared Spectroscopy. Applications of nanocomposite films are being investigated as a stable coating for optical purposes.  相似文献   

18.
A stretchable carbon nanotube strain sensor for human-motion detection   总被引:1,自引:0,他引:1  
Devices made from stretchable electronic materials could be incorporated into clothing or attached directly to the body. Such materials have typically been prepared by engineering conventional rigid materials such as silicon, rather than by developing new materials. Here, we report a class of wearable and stretchable devices fabricated from thin films of aligned single-walled carbon nanotubes. When stretched, the nanotube films fracture into gaps and islands, and bundles bridging the gaps. This mechanism allows the films to act as strain sensors capable of measuring strains up to 280% (50 times more than conventional metal strain gauges), with high durability, fast response and low creep. We assembled the carbon-nanotube sensors on stockings, bandages and gloves to fabricate devices that can detect different types of human motion, including movement, typing, breathing and speech.  相似文献   

19.
Summary We study the development of shear bands in a thermally softening viscoplastic prismatic body of square cross-section and containing two symmetrically placed thin layers of a different viscoplastic material and two elliptical voids with their major axes aligned along the vertical centroidal axis of the cross-section. One tip of each elliptical void is abutting the common interface between the layer and the matrix material. Two cases, i.e., when the yield stress of the material of the thin layer in a quasistatic simple compression test equals either five times or one-fifth that of the matrix material are studied. The body is deformed in plane strain compression at an average strain-rate of 5,000 sec–1, and the deformations are assumed to be symmetrical about the centroidal axes.It is found that in each case shear bands initiate from points on the vertical traction free surfaces where the layer and the matrix materials meet. These bands propagate horizontally into the layer when it is made of a softer material and into the matrix along lines making an angle of ±45° with the vertical when the layer material is harder. In the former case, the band in the layer near the upper matrix/layer interface bifurcates into two bands, one propagating horizontally into the layer and then into other into the matrix material along the direction of the maximum shear stress. The band in the layer near the lower matrix/layer interface propagates horizontally first into the layer and then into the matrix material along the direction of the maximum shear stress. Irrespective of the value of the yield stress for the layer material, a band also initiates from the void tip abutting the layer/matrix interface. This band propagates initially along the layer/matrix interface and then into the matrix material along a line making an angle of approximately 45° with the vertical.  相似文献   

20.
Stable colloidal suspension of magnetite/starch nanocomposite was prepared by a facile and aqueous-based chemical precipitation method.Magnetite/carbon nanocomposite thin films were subsequently formed upon carbonization of the starch component by heat treatment under controlled conditions.The initial content of native sago starch as the carbon source was found to affect the microstructure and electrochemical properties of the resulted magnetite/carbon nanocomposite thin films.A specific capacitance of 124 F/g was achieved for the magnetite/carbon nanocomposite thin films as compared to that of 82 F/g for pure magnetite thin films in Na 2 SO 4 aqueous electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号