首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ternary organic solar cells (OSCs) are burgeoning as one of the effective strategies to achieve high power conversion efficiencies (PCEs) by incorporating a third component with a complementary absorption into the binary blends. In this study, we presented a new two-dimension-conjugated small molecule denoted by DR3TBDTTVT, which alone gave rise to a best PCE of 5.71% with acceptor PC71BM as active layer. Given the complementary absorption with PTB7-Th, DR3TBDTTVT was doped into (PTB7-Th:PC71BM)-based binary blends, and ternary OSCs were developed. The ternary OSCs with 10 wt% of DR3TBDTTVT displayed improved hole-mobility, reduced device resistance and better phase separation of active layer, thus leading to an impressive PCE of 7.77% with open-circuit voltage of 0.77 V, short-circuit density of 14.52 mA cm−2 and fill factor of 70.3%. Ternary OSCs well make up for the light-harvesting insufficiency of binary OSCs, and this research provides a new material for the improvement of PCEs for single-junction OSCs.  相似文献   

2.
The ternary structure that combines fullerene and nonfullerene acceptors in a photoactive layer is demonstrated as an effective approach for boosting the power conversion efficiencies (PCEs) of organic solar cells (OSCs). Here, highly efficient ternary OSCs comprising a wide‐bandgap polymer donor (PBT1‐C), a narrow‐bandgap nonfullerene acceptor (IT‐2F), and a typical fullerene derivative (PC71BM) are reported. It is found that the addition of PC71BM into the PBT1‐C:IT‐2F blend not only increases the device efficiency up to 12.2%, but also improves the ambient stability of the OSCs. Detailed investigations indicate that the improvement in photovoltaic performance benefits from synergistic effects of increased photon‐harvesting, enhanced charge separation and transport, suppressed trap‐assisted recombination, and optimized film morphology. Moreover, it is noticed that such a ternary system exhibits excellent tolerance to the PC71BM component, for which PCEs over 11.2% can be maintained throughout the whole blend ratios, higher than that (11.0%) of PBT1‐C:IT‐2F binary reference device.  相似文献   

3.
Organic solar cells (OSCs) consisting of an ultralow‐bandgap nonfullerene acceptor (NFA) with an optical absorption edge that extends to the near‐infrared (NIR) region are of vital interest to semitransparent and tandem devices. However, huge energy‐loss related to inefficient charge dissociation hinders their further development. The critical issues of charge separation as exemplified in NIR‐NFA OSCs based on the paradigm blend of PTB7–Th donor (D) and IEICO–4F acceptor (A) are revealed here. These studies corroborate efficient charge transfer between D and A, accompanied by geminate recombination of photo‐excited charge carriers. Two key factors restricting charge separation are unveiled as the connection discontinuity of individual phases in the blend and long‐lived interfacial charge‐transfer states (CTS). By incorporation of a third‐component of benchmark ITIC or PC71BM with various molar ratios, these two issues are well‐resolved accordingly, yet in distinctly influencing mechanisms. ITIC molecules modulate film morphology to create more continuous paths for charge transportation, whereas PC71BM diminishes CTS and enhances electron transfer at the D/A interfaces. Consequently, the optimal untreated ternary OSCs comprising 0.3 wt% ITIC and 0.1 wt% PC71BM in the blend deliver higher JSC values of 21.9 and 25.4 mA cm‐2, and hence increased PCE of 10.2% and 10.6%, respectively.  相似文献   

4.
Two new donor (D) - acceptor (A) copolymers, named m-O-p-F-DFQx-BDT (OFQx-T) and m-EH-p-F-DFQx-BDT (EHFQx-T), which were based on meta-octyloxy-para-fluorophenyl and meta-ethylhexyloxy-para-fluorophenyl difluoroquinoxaline as acceptor units (O-DFQx/EH-DFQx) and alkylthienyl substituted benzodithiophene (BDT) as a donor unit, were designed and synthesized. EHFQx-T had higher absorption coefficient than OFQx-T which contributed to larger short-circuit current density (Jsc). EHFQx-T showed a lower the highest occupied molecular orbital (HOMO) which is beneficial for the voltage open-circuit (Voc). The polymer solar cells (PSCs) based OFQx-T:PC71BM and EHFQx-T:PC71BM blended film as active layer showed high power conversion efficiency (PCE) of 7.60% and 8.44%, respectively, with 1,8-diiodooctane (DIO) solvent additive treatment. More importantly, OFQx-T:PC71BM and EHFQx-T:PC71BM had good fill factor (FF), especially the FF of OFQx-T:PC71BM was over 70%. The high FF contributed to obtain high PCEs for OFQx-T and EHFQx-T. The more balanced and higher charge mobility, smaller geminate recombination and suitable nanoscale phase separation size of EHFQx-T demonstrate that changing octyl chain to ethylhexyl chain in DFQx acceptor unit is efficient to improve photovoltaic properties in fullerene solar cells.  相似文献   

5.
A series of solution processed organic solar cells (OSCs) were fabricated with a two-dimensional conjugated small molecule SMPV1 as electron donor and fullerene derivatives PC71BM or ICBA as electron acceptor. The champion power conversion efficiency (PCE) of OSCs arrives to 7.05% for the cells with PC71BM as electron acceptor. A relatively large open circuit voltage (VOC) of 1.15 V is obtained from cells using ICBA as electron acceptor with an acceptable PCE of 2.54%. The fill factor (FF) of OSCs is 72% or 61% for the cells with PC71BM or ICBA as electron acceptor, which is relatively high value for small molecule OSCs. The relatively low performance of OSCs with ICBA as electron acceptor indicates that ICBA cannot play positive role in photoelectric conversion processes, which is very similar to the phenomenon observed from the OSCs with high efficient narrow band gap polymers other than P3HT as electron donor, the underlying reason is still in debate. The SMPV1 has strong self-assemble ability to form an ordered two dimensional lamellar structure, which provides an effective platform to investigate the effect of electron acceptor chemical structure on the performance of OSCs. Experimental results exhibit that ICBA molecules may prefer to vertical cross-intercalation among side chains of SMPV1, PC71BM molecules may have better miscibility with SMPV1 in the active layer. The different donor/acceptor (D/A) intermolecular arrangement strongly influences photon harvesting, exciton dissociation and charge carrier transport, which may provide a new sight on performance improvement of OSCs by adjusting D/A intermolecular arrangements.  相似文献   

6.
For comprehensive development of organic solar cells (OSCs), some factors such as environmental stability, low cost, insensitive film thickness, component contents tolerance, and green preparation processes are equally crucial to achieve high power conversion efficiencies (PCEs). In this work, a small molecule 3‐(diethylamino)‐7‐imino‐7H‐benzo[4,5]imidazo[1,2‐a]chromeno[3,2‐c]pyridine‐6‐carbonitrile (DIBC), which is commercially available at low cost, is utilized to realize high‐performance ternary OSCs. Demonstrated via Fourier transform infrared and 2D‐1HNMR, DIBC can form hydrogen bond interactions with [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in solid films. Further electrostatic potential (ESP) calculations indicate that the hydrogen bond interaction enhances the ESP of PC71BM and accelerates charge transport between donor and acceptor. As a result, poly(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b0]dithiophene‐2,6‐diylalt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl (PTB7‐Th):DIBC:PC71BM‐based ternary OSC achieves a maximum efficiency of 12.17%, which is the best result of green solvent processed fullerene OSCs at present. It is noteworthy that the ternary OSCs also show great tolerance to film thickness and blend ratios. These unique properties are attributed to the hydrogen‐bond‐linked DIBC and PC71BM, which modulates molecule distribution and improves film morphology with an interpenetrating network structure. Furthermore, the DIBC containing device also exhibits good thermal and light radiation stability. These results illustrate that intermolecular hydrogen bond interaction has great potential for realizing high‐performance OSCs.  相似文献   

7.
A simple and effective modification of phenyl‐C70‐butyric acid methyl ester (PC70BM) is carried out in a single step after which the material is used as electron acceptor for bulk heterojunction polymer solar cells (PSCs). The modified PC70BM, namely CN‐PC70BM, showed broader and stronger absorption in the visible region (350–550 nm) of the solar spectrum than PC70BM because of the presence of a cyanovinylene 4‐nitrophenyl segment. The lowest unoccupied molecular energy level (LUMO) of CN‐PC70BM is higher than that of PC70BM by 0.15 eV. The PSC based on the blend (cast from tetrahydrofuran (THF) solution) consists of P3HT as the electron donor and CN‐PC70BM as the electron acceptor and shows a power conversion efficiency (PCE) of 4.88%, which is higher than that of devices based on PC70BM as the electron acceptor (3.23%). The higher PCE of the solar cell based on P3HT:CN‐PC70BM is related to the increase in both the short circuit current (Jsc) and the open circuit voltage (Voc). The increase in Jsc is related to the stronger light absorption of CN‐PC70BM in the visible region of the solar spectrum as compared to that of PC70BM. In other words, more excitons are generated in the bulk heterojunction (BHJ) active layer. On the other hand, the higher difference between the LUMO of CN‐PC70BM and the HOMO of P3HT causes an enhancement in the Voc. The addition of 2% (v/v) 1‐chloronapthalene (CN) to the THF solvent during film deposition results in an overall improvement of the PCE up to 5.83%. This improvement in PCE can be attributed to the enhanced crystallinity of the blend (particularly of P3HT) and more balanced charge transport in the device.  相似文献   

8.
In this study, the solubility properties of a given ternary blend set, with two donors (poly(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl (PTB7‐Th) and benzo[1,2‐b;4,5‐b′]dithiophene‐based small molecule (DR3TSBDT)) and one acceptor ([6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM)), in a series of solvents are determined, and active material–solvent interactions are used as an aid for finding suitable nonchlorinated solvents to achieve effective ternary organic solar cells (OSCs) based on PTB7‐Th:DR3TSBDT:PC71BM. An exceptional power conversion efficiency (PCE) as high as 12.3% (certified 11.94%) is obtained using the developed nonhalogenated processing system. In‐depth investigations (morphology, charge mobility, recombination dynamics, and OSC characteristics) uncover the underlying structure–property relationships as a function of the chosen nonhalogenated systems. Another intriguing finding of this study is the formation of a cubic bimolecular crystal structure of PTB7‐Th:PC71BM in a nonhalogenated system, which is the first such demonstration in blend films. This sheds light upon the fact that the physical properties of a material applied from different solutions may surpass the variation in the properties between two material having totally different molecular structure. Therefore, this work not only offers important scientific insights into developing highly efficient and eco‐friendly OSCs but also improves our understanding of achievable bimolecular crystals with an intercalated structure.  相似文献   

9.
A new planar A-D-A structured organic small molecule semiconductor (O-SMS) with dialkyl-thiophene substituted benzodithiophene (BDT) as central electron-rich core flanked by relatively electron-deficient units of [1,2,5]thiadiazolo[3,4-c]pyridine (PTz) and terminated with alkyl-bithiophene as π-conjugated end-caps, BDTDPTz, was designed and synthesized for the application as donor material in organic solar cells (OSCs). BDTDPTz possesses wider absorption spectra with an optical bandgap of 1.65 eV, lower the highest occupied molecular orbital (HOMO) energy level of −5.42 eV and highly crystalline structures in solid films. The OSCs based on BDTDPTz:PC71BM blend film with a lower PC71BM content of 40% demonstrate a power conversion efficiency (PCE) of 6.28% with a relatively higher open-circuit voltage of 0.868 V and short circuit current density of 12.83 mA cm−2. These results indicate that highly coplanar and crystalline structure of BDTDPTz can effectively reduce the content of fullerene acceptor in the active layer and then enhance the absorption and PCE of the OSCs.  相似文献   

10.
Blade coating was successfully applied to realise high-efficiency small-molecule organic solar cells (OSCs) with a solution-processed active layer comprising a small organic molecule DR3TBDTT with a benzo[1,2–b:4,5–b′]dithiophene (BDT) unit as the central building block as the donor and [6,6]–phenyl–C71–butyric acid methyl ester (PC71BM) as the acceptor. Using chloroform as the solvent, a DR3TBDTT/PC71BM blend active layer without an additive was effectively formed through blade coating. The power conversion efficiency (PCE) of small organic molecule solar cells was enhanced by 3.7 times through thermal annealing at 100 °C. This method produces OSCs with a high PCE of up to 6.69%, with an open circuit voltage (Voc) of 0.97 V, a short-circuit current density (Jsc) of 12.60 mA/cm2, and a fill factor (FF) of 0.55.  相似文献   

11.
The recent stunning rise in power conversion efficiencies (PCEs) of ternary organic solar cells (OSCs) has triggered much attention. However, achieving high PCE values are quite challenging because the ternary system is complicated on phase separation behavior. In this work, ternary organic solar cells (OSCs) with one acceptor (PC71BM) and two donors, i.e., one polymer (PTB7-Th) and one small molecule (DR3TBDTT) have been fabricated. We substantially improved PCE from the best reported value of 7.53%–9.25% with increase of 22.8%, and an averaged PCE of 9.25% is obtained due to the improvement of the fill factor (FF) and the short-circuit current density (Jsc). The results of atomic force microscopy (AFM) indicate that a highly ordered molecular compatibility could be obtained by forming alloy with two miscible donors, and the doping of DR3TBDTT not only protects the long distance charge transport in the original binary system, but also improves the size of phase separation of the active layer within the ternary OSCs, thus forming the ordered nano morphology, which can improve the mobility of hole and reduce the charge recombination.  相似文献   

12.
Polymer solar cells (PSCs) based on fullerene derivatives often require additives to optimize active layer morphology. Here, the novel additive 1‐naphthalenethiol (SH‐na) is proposed for processing the PSC active layer of PTB7:PC71BM. Spin‐casting with SH‐na as additive achieves a power conversion efficiency (PCE) of 7.3%, compared to 6.7% for preparations containing the conventional 1,8‐diiodooctane additive. Dipping of the active layer into a methanol solution of critical SH‐na concentration increases the PCE further to 8.75%. This is mainly due to an improved open‐circuit voltage (from 0.72 to 0.79 V) together with a high achieved fill factor of 0.70. The improved PCE is correlated to the morphology optimization according to measurements of grazing incidence small/wide‐angle X‐ray scattering, neutron reflectivity, atomic force microscopy, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. The integrated results suggest that the halogen‐free additive SH‐na can form hydrogen bonds with both PTB7 and PC71BM, resulting in substantially improved PTB7 crystallization and multi‐length‐scale PC71BM dispersion for appropriate aggregation and networks. The subsequent dipping treatment with SH‐na further modifies the active layer morphology for a more PC71BM‐enriched surface and better PC71BM networks in the bulk film for an optimized electron‐to‐hole mobility ratio of 2.04, hence resulting in improved device performance.  相似文献   

13.
Adding a small amount of a processing additive to the casting solution of photoactive organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano‐structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, the effects of the processing additive diiodooctane (DIO) on the morphology of the established blend of PBDTTT‐C‐T polymer and the fullerene derivative PC71BM used for OPVs are investigated, starting in the casting solution and tracing the effects in spun‐cast thin films by using neutron/X‐ray scattering, neutron reflectometry, and other characterization techniques. The results reveal that DIO has no observable effect on the structures of PBDTTT‐C‐T and PC71BM in solution; however, in the spun‐cast films, it significantly promotes their molecular ordering and phase segregation, resulting in improved PCE. Thermodynamic analysis based on Flory‐Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation due to changes in concentration resulting from evaporation of the solvent and additive during film formation. Such information may help improve the rational design of ternary blends to more consistently achieve improved PCE for OPVs.  相似文献   

14.
This paper proposes high efficiency semitransparent organic solar cells (OSCs) with good color perception and good color rendering using blade coating technique. We investigate four different polymer blends and first fabricate small area devices with active area of 0.04 cm2, followed by large area devices with active area of 10.8 cm2. Two of the polymer blends, 2,6-Bis(trimethyltin)-4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene:6,6-phenyl C71-butyric acid methyl ester (PBDTTT-CT:PC71BM) and poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′] dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]:PC71BM (PBDTTT-EFT:PC71BM) show promising results. For small area devices, semitransparent PBDTTT-CT:PC71BM and semitransparent PBDTTT-EFT:PC71BM achieve a power conversion efficiency (PCE) of 5.2% (opaque PCE = 7.5%) and 5.6% (opaque PCE = 9.4%) respectively. For large area devices, they are found to produce a PCE of 3.8% (opaque PCE = 4.2%) and 5.3% (opaque PCE = 5.9%) respectively. Based on the CIE 1931 chromaticity diagram, semitransparent PBDTTT-CT:PC71BM and semitransparent PBDTTT-EFT:PC71BM are located very close to the standard illuminant D65, indicating good color perception. As for color rendering, they demonstrate high color rendering index (CRI) of 95.4 and 87.1 respectively. These combined high performances indicate high-quality transmitted light, which is suitable for window application.  相似文献   

15.
Solution processed organic solar cells (OSCs) often suffer from low charge mobilities partially due to the disordered non-crystalline or amorphous morphology of their films. In this study, 4,4′-bipyridyl (Bipy) is introduced to coordinate a zinc(II) porphyrin to form porphyrin complexes. A significant enhanced hole mobility and solar cell device performance are attained when the ratio of Bipy is 0.25 in blend films with [6, 6]-phenyl C61-butyric acid methyl ester (PC61BM). When [6, 6]-phenyl C71-butyric acid methyl ester (PC71BM) was used instead of PC61BM, the PCE is enhanced to 2.83% in the presence of 0.25 equiv Bipy, which is an increase of 53% compared to that without Bipy.  相似文献   

16.
This work demonstrates the stability and degradation of OSCs based on poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′ benzothiadiazole)] (PCDTBT): (6,6)-Phenyl C71 butyric acid methyl ester (PC71BM) photoactive blend layers as a function of ageing time in air. Analysis of the stability and degradation process for the OSCs was conducted under ambient air by using current-voltage (I-V) measurements and x-ray photoelectron spectroscopy (XPS). The interface between photoactive layer and HTL (PEDOT:PSS) was also investigated. Device stability was investigated by calculating decay in power conversion efficiency (PCE) as a function of ageing time in the air. The PCE of devices decrease from 5.17 to 3.61% in one week of fabrication, which is attributed to indium and oxygen migration into the PEDOT:PSS and PCDTBT:PC71BM layer. Further, after aging for 1000 h, XPS spectra confirm the significant diffusion of oxygen into the HTL and photoactive layer which increased from 3.0 and 23.3% to 20.4 and 35.7% in photoactive layer and HTL, respectively. Similarly, the indium content reached to 17.9% on PEDOT:PSS surface and 0.4% on PCDTBT:PC71BM surface in 1000 h. Core-level spectra of active layer indicate the oxidation of carbon atoms in the fullerene cage, oxidation of nitrogen present in the polymer matrix and formation of In2O3 due to indium diffusion. We also observed a steady fall in the optical absorption of the active layer during ageing in ambient air and it reduced to 76.5% of initial value in 1000 h. On the basis of these experimental results, we discussed key parameters that account for the degradation process and stability of OSCs in order to improve the device performance.  相似文献   

17.
Ultraflexible and ultra-lightweight organic solar cells (OSCs) have attracted great attention in terms of power supply in wearable electronic systems. Here, ultrathin and ultra-lightweight OSCs, with a total thickness of less than 3 µm, with excellent mechanical properties in terms of their flexibility and ability to be stretched are demonstrated. A stabilized power conversion efficiency (PCE) of 15.5% and unprecedented power-per-weight of 32.07 W g−1 at a weight of 4.83 g m−2 is achieved, which represents one of the best-performing OSCs based on ultrathin foils substrate reported to date. The ternary strategy introduces the third component of amorphous conformation of the PC71BM molecule, which can slightly reduce crystallization and aggregates without decreasing the electron mobility, thereby reducing rigidity and brittleness of the active layer. The increase in the ductility of the active layer significantly improves the mechanical flexibility of the device, resulting in over 90% retention in the PCE after 200 stretching–compression cycles. In addition, the ternary device exhibits excellent stability when stored in a N2-filled glove box, resulting in the PCE retaining over 95% of its initial efficiency even after 1000 h. This ultraflexible and ultra-lightweight photovoltaic foils constitute a major step toward the integration of power supply into malleable electronic textiles.  相似文献   

18.
We present bulk heterojunction organic solar cells fabricated by spray‐casting both the PEDOT:PSS hole‐transport layer (HTL) and active PBDTTT‐EFT:PC71BM layers in air. Devices were fabricated in a (6 × 6) array across a large‐area substrate (25 cm2) with each pixel having an active area of 6.45 mm2. We show that the film uniformity and operational homogeneity of the devices are excellent. The champion device with spray cast active layer on spin cast PEDOT:PSS had an power conversion efficiency (PCE) of 8.75%, and the best device with spray cast active layer and PEDOT:PSS had a PCE of 8.06%. The impacts of air and light exposure of the active layer on device performance are investigated and found to be detrimental. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Fabricating high‐efficient electron transporting interfacial layers (ETLs) with isotropic features is highly desired for all‐directional electron transfer/collection from an anisotropic active layer, achieving excellent power conversion efficiency (PCEs) on nonfullerene acceptor (NFA) organic solar cells (OSCs). The complicated synthesis and cost‐consumption in exploring versatile materials arouse great interest in the development of binary‐doping interlayers without phase separation and flexible manipulation. Herein, for the first time, a novel cathode interfacial layer based on biomass‐derived demethylated kraft lignin (DMeKL) is proposed. Features of multiple phenolic‐hydroxyl (PhOH) and uniform‐distributed render DMeKL to exhibit an excellent bonding capacity with amino terminal substituted perylene diiminde (PDIN), and successfully form a high‐efficient isotropic electron transfer 3D network. Synchronously, secondary bonds completely modify conjugate‐blocked linkages of DMeKL, significantly enhance the electron transporting performance on cross‐section and vertical‐sections, and repair the contact of PDIN with active layer. The DMeKL/PDIN‐based 3D‐network exhibits well‐matched work function (WF) (–4.34 eV) with cathode (–4.30 eV) and energy level of electron acceptor (–4.11 eV). DMeKL/PDIN‐based NFAs‐OSC shows excellent short‐circuit current density (26.61 mA cm–2) and PCE (16.02%) beyond the classic PDIN‐based NFA‐OSC (25.64 mA cm–2, 15.41%), which is the highest PCEs among biomaterials interlayers. The results supply a novel method to achieve high‐efficient cathode interlayer for NFAs‐OSCs.  相似文献   

20.
In this work, a facile preparation of Cu-Au bimetallic nanoparticles (NPs) with core-shell nanostructures is reported. Importantly, as-prepared Cu-Au NPs are highly stable, solution-processable and exhibit a broad localized surface plasmon resonance (LSPR) band at long wavelengths of 550–850 nm. Highly efficient plasmonic organic solar cells (OSCs) were fabricated by embedding Cu-Au NPs in an anodic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer. The average power conversion efficiency (PCE) was enhanced from 3.21% to 3.63% for poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PC61BM) based devices, from 6.51% to 7.13% for poly[(ethylhexyl-thiophenyl)-benzodithiophene -(ethylhexyl)-thienothiophene](PTB7-th):PC61BM based devices and from 7.53% to 8.48% for PTB7-th:PC71BM based devices, corresponding to 9.5–13.4% PCE improvement. Such an improvement is very comparable to that (12.5%) obtained in those with plasmonic Au NPs but achieved at lower cost. This study thus demonstrates a novel and cost-effective approach to enhance the photovoltaic performance of OSCs, in combination with the broad-band plasmonic Cu-Au bimetallic nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号