首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper challenges the fabrication of a thin film energy storage device on a flexible polymer substrate specifically by replacing most commonly used metal foil current collectors with coated current collectors. Mass‐manufacturable spray‐coating technology enables the fabrication of two different half‐cell electric double layer capacitors (EDLC) with a spray‐coated silver paste current collector and a Ni foil current collector. The larger specific capacitances of the half‐cell EDLC with the spray‐coated silver current collector are obtained as 103.86 F/g and 76.8 F/g for scan rates of 10 mV/s and 500 mV/s, respectively. Further, even though the half‐cell EDLC with the spray‐coated current collector is heavier than that with the Ni foil current collector, smaller Warburg impedance and contact resistance are characterized from Nyquist plots. For the applied voltages ranging from ?0.5 V to 0.5 V, the spray‐coated thin film energy storage device exhibits a better performance.  相似文献   

2.
Ultralong cycle life, high energy, and power density rechargeable lithium‐ion batteries are crucial to the ever‐increasing large‐scale electric energy storage for renewable energy and sustainable road transport. However, the commercial graphite anode cannot perform this challenging task due to its low theoretical capacity and poor rate‐capability performance. Metal oxides hold much higher capacity but still are plagued by low rate capability and serious capacity degradation. Here, a novel strategy is developed to prepare binder‐free and mechanically robust CoO/graphene electrodes, wherein homogenous and full coating of β‐Co(OH)2 nanosheets on graphene, through a novel electrostatic induced spread growth method, plays a key role. The combined advantages of large 2D surface and moderate inflexibility of the as‐obtained β‐Co(OH)2/graphene hybrid enables its easy coating on Cu foil by a simple layer‐by‐layer stacking process. Devices made with these electrodes exhibit high rate capability over a temperature range from 0 to 55 °C and, most importantly, maintain excellent cycle stability up to 5000 cycles even at a high current density.  相似文献   

3.
All‐solid‐state flexible asymmetric supercapacitors (ASCs) are developed by utilization of graphene nanoribbon (GNR)/Co0.85Se composites as the positive electrode, GNR/Bi2Se3 composites as the negative electrode, and polymer‐grafted‐graphene oxide membranes as solid‐state electrolytes. Both GNR/Co0.85Se and GNR/Bi2Se3 composite electrodes are developed by a facile one‐step hydrothermal growth method from graphene oxide nanoribbons as the nucleation framework. The GNR/Co0.85Se composite electrode exhibits a specific capacity of 76.4 mAh g?1 at a current density of 1 A g?1 and the GNR/Bi2Se3 composite electrode exhibits a specific capacity of 100.2 mAh g?1 at a current density of 0.5 A g?1. Moreover, the stretchable membrane solid‐state electrolytes exhibit superior ionic conductivity of 108.7 mS cm?1. As a result, the flexible ASCs demonstrate an operating voltage of 1.6 V, an energy density of 30.9 Wh kg?1 at the power density of 559 W kg?1, and excellent cycling stability with 89% capacitance retention after 5000 cycles. All these results demonstrate that this study provides a simple, scalable, and efficient approach to fabricate high performance flexible all‐solid‐state ASCs for energy storage.  相似文献   

4.
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) along with hydrogen evolution reaction (HER) have been considered critical processes for electrochemical energy conversion and storage through metal‐air battery, fuel cell, and water electrolyzer technologies. Here, a new class of multifunctional electrocatalysts consisting of dominant metallic Ni or Co with small fraction of their oxides anchored onto nitrogen‐doped reduced graphene oxide (rGO) including Co‐CoO/N‐rGO and Ni‐NiO/N‐rGO are prepared via a pyrolysis of graphene oxide and cobalt or nickel salts. Ni‐NiO/N‐rGO shows the higher electrocatalytic activity for the OER in 0.1 m KOH with a low overpotential of 0.24 V at a current density of 10 mA cm?2, which is superior to that of the commercial IrO2. In addition, it exhibits remarkable activity for the HER, demonstrating a low overpotential of 0.16 V at a current density of 20 mA cm?2 in 1.0 m KOH. Apart from similar HER activity to the Ni‐based catalyst, Co‐CoO/N‐rGO displays the higher activity for the ORR, comparable to Pt/C in zinc‐air batteries. This work provides a new avenue for the development of multifunctional electrocatalysts with optimal catalytic activity by varying transition metals (Ni or Co) for these highly demanded electrochemical energy technologies.  相似文献   

5.
Flexible energy storage devices are critical components for emerging flexible and wearable electronics. Improving the electrochemical performance of flexible energy storage devices depends largely on development of novel electrode architectures and new systems. Here, a new class of flexible energy storage device called flexible sodium‐ion pseudocapacitors is developed based on 3D‐flexible Na2Ti3O7 nanosheet arrays/carbon textiles (NTO/CT) as anode and flexible reduced graphene oxide film (GFs) as cathode without metal current collectors or conducting additives. The NTO/CT anode with advanced electrode architectures is fabricated by directly growing Na2Ti3O7 nanosheet arrays on carbon textiles with robust adhesion through a simple hydrothermal process. The flexible GF//NTO/CT configuration achieves a high energy density of 55 Wh kg?1 and high power density of 3000 W kg?1. Taking the fully packaged flexible sodium‐ion pseudocapacitors into consideration, the maximum practical volumetric energy density and power density reach up to 1.3 mWh cm?3 and 70 mW cm?3, respectively. In addition, the flexible GF//NTO/CT device demonstrates a stable electrochemical performances with almost 100% capacitance retention under harsh mechanical deformation.  相似文献   

6.
Surface modification of carbon materials plays an important role in tailoring carbon surface chemistry to specify their electrochemical performance. Here, a surface modification strategy for graphene is proposed to produce LiF‐nanoparticle‐modified graphene as a high‐rate, large‐capacity pre‐lithiated electrode for high‐power and high‐energy lithium ion batteries. The LiF nanoparticles covering the active sites of the graphene surface provide an extra Li source and act as an effective solid electrolyte interphase (SEI) inhibiter to suppress LiFP6 electrolyte decomposition reactions, affect SEI components, and reduce their thickness. Consequently, the Li‐ion diffusion is greatly sped up and the thermodynamic stability of the electrode is significantly improved. This modified graphene electrode shows excellent rate capability and improved first‐cycle coulombic efficiency, cycling stability, and ultrahigh power and energy densities accessible during fast charge/discharge processes.  相似文献   

7.
Building nanocomposite architectures based on nanocarbon materials (such as carbon nanotubes and graphene nanosheets) and metal‐oxide nanoparticles is of great interests for electrochemical energy storage. Here, an ionic‐liquid‐assisted strategy is presented to mediate the in situ growth of TiO2 nanocrystals with controlled size on carbon nanotubes and graphene, and also reduce the modified carbon supports to recover the graphitic structure simultaneously. The as‐prepared nanocomposites exhibit a highly porous and robust structure with intimate coupling between TiO2 nanocrystals and carbon supports, which offers facile ion and electron transport pathway as well as high mechanical stability. When evaluated as electrode materials for lithium‐ion batteries, the nanocomposites manifest high specific capacity, long cycling lifetime, and excellent rate capability, showing their promising application in high‐performance energy storage devices.  相似文献   

8.
Sodium‐ion hybrid supercapacitors (Na‐HSCs) have potential for mid‐ to large‐scale energy storage applications because of their high energy/power densities, long cycle life, and the low cost of sodium. However, one of the obstacles to developing Na‐HSCs is the imbalance of kinetics from different charge storage mechanisms between the sluggish faradaic anode and the rapid non‐faradaic capacitive cathode. Thus, to develop high‐power Na‐HSC anode materials, this paper presents the facile synthesis of nanocomposites comprising Nb2O5@Carbon core–shell nanoparticles (Nb2O5@C NPs) and reduced graphene oxide (rGO), and an analysis of their electrochemical performance with respect to various weight ratios of Nb2O5@C NPs to rGO (e.g., Nb2O5@C, Nb2O5@C/rGO‐70, ‐50, and ‐30). In a Na half‐cell configuration, the Nb2O5@C/rGO‐50 shows highly reversible capacity of ≈285 mA h g?1 at 0.025 A g?1 in the potential range of 0.01–3.0 V (vs Na/Na+). In addition, the Na‐HSC using the Nb2O5@C/rGO‐50 anode and activated carbon (MSP‐20) cathode delivers high energy/power densities (≈76 W h kg?1 and ≈20 800 W kg?1) with a stable cycle life in the potential range of 1.0–4.3 V. The energy and power densities of the Na‐HSC developed in this study are higher than those of similar Li‐ and Na‐HSCs previously reported.  相似文献   

9.
Metal oxides have been regarded as promising next‐generation anode materials for rechargeable lithium ion batteries; however, their poor stability, which is caused by large volume changes during repeated lithiation/delithiation, remains a challenge. Here, conformally encapsulated low‐oxidation state oxide cubes with reduced graphene oxide (RGO) obtained via a new pressurized reduction consisting of external mechanical compression and internal thermokinetic reduction from highly porous metal oxides/RGO aerogel (RGOA) are reported. Using single crystalline (SC) cobalt oxides and iron oxide cubes as model systems, the SC‐Co3O4 or Fe2O3 cube/RGOA are pressurized into compacted xerogel along with a uniform thermokinetic reduction, which result in topotactic transformation to core‐shelled CoO/RGO or Fe3O4@RGO cubes. The SC‐CoO and SC‐Fe3O4 cubes isolated perfectly in the RGO shells have dramatically improved their cycling stabilities for lithium ion storage to hundreds of times.  相似文献   

10.
Developing earth‐abundant, active, and stable electrocatalysts for water splitting is a vital but challenging step for realizing efficient conversion and storage of sustainable energy. Here, a multiscale structure‐engineering approach to construct iron (Fe) doped cobalt monophosphide (CoP) hybrids for efficient electrocatalysis of water splitting is reported. A two‐step method is developed to synthesize CoP nanosheets with uniform Fe doping and hybridization with carbon nanotubes (CNTs). The nanostructuring, uniform doping, and hybridization with CNT afford efficient electrocatalysts comparable to Pt/C for hydrogen evolution reactions in acidic, neutral, and alkaline electrolytes. It is found that the Fe doping level has different effects on catalytic activities in different electrolytes. Furthermore, after in situ oxidization/hydrolysis of the phosphides to corresponding oxyhydroxides, the hybrid electrocatalysts exhibit better performances than the benchmark commercial Ir/C for catalyzing the oxygen evolution reaction. A two‐electrode alkaline water electrolyzer constructed with these hybrid electrocatalysts can afford a current density of 10 mA cm?2 at a voltage of 1.5 V.  相似文献   

11.
Development of electrocatalysts for hydrogen evolution reaction (HER) with low overpotential and robust stability remains as one of the most serious challenges for energy conversion. Herein, a serviceable and highly active HER electrocatalyst with multilevel porous structure (Co‐Co2P nanoparticles@N, P doped carbon/reduced graphene oxides (Co‐Co2P@NPC/rGO)) is synthesized by Saccharomycete cells as template to adsorb metal ions and graphene nanosheets as separating agent to prevent aggregation, which is composed of Co‐Co2P nanoparticles with size of ≈104.7 nm embedded into carbonized Saccharomycete cells. The Saccharomycete cells provide not only carbon source to produce carbon shells, but also phosphorus source to prepare metal phosphides. In order to realize the practicability and permanent stability, the binderless and 3D electrodes composed of obtained Co‐Co2P@NPC/rGO powder are constructed, which possess a low overpotential of 61.5 mV (achieve 10 mA cm?2) and the high current density with extraordinary catalytic stability (1000 mA cm?2 for 20 h) in 0.5 m H2SO4. The preparation process is appropriate for synthesizing various metal or metal phosphide@carbon electrocatalysts. This work may provide a biological template method for rational design and fabrication of various metals or metal compounds@carbon 3D electrodes with promising applications in energy conversion and storage.  相似文献   

12.
Graphite oxide (GO) has received extensive interest as a precursor for the bulk production of graphene‐based materials. Here, the highly energetic nature of GO, noted from the self‐propagating thermal deoxygenating reaction observed in solid state, is explored. Although the resulting graphene product is quite stable against combustion even in a natural gas flame, its thermal stability is significantly reduced when contaminated with potassium salt by‐products left from GO synthesis. In particular, the contaminated GO becomes highly flammable. A gentle touch with a hot soldering iron can trigger violent, catastrophic, total combustion of such GO films, which poses a serious fire hazard. This highlights the need for efficient sample purification methods. Typically, purification of GO is hindered by its tendency to gelate as the pH value increases during rinsing. A two‐step, acid–acetone washing procedure is found to be effective for suppressing gelation and thus facilitating purification. Salt‐induced flammability is alarming for the fire safety of large‐scale manufacturing, processing, and storage of GO materials. However, the energy released from the deoxygenation of GO can also be harnessed to drive new reactions for creating graphene‐based hybrid materials. Through such domino‐like reactions, graphene sheets decorated with metal and metal oxide particles are synthesized using GO as the in situ power source. Enhanced electrochemical capacitance is observed for graphene sheets loaded with RuO2 nanoparticles.  相似文献   

13.
Fiber‐shaped micro‐supercapacitors (micro‐SCs) have attracted enormous interest in wearable electronics due to high flexibility and weavability. However, they usually present a low energy density because of inhomogeneity and less pores. Here, we demonstrate a microfluidic‐directed strategy to synthesize homogeneous nitrogen‐doped porous graphene fibers. The porous fibers‐based micro‐SCs utilize solid‐state phosphoric acid/polyvinyl alcohol (H3PO4/PVA) and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate/poly(vinylidenefluoride‐co‐hexafluoropropylene) (EMIBF4/PVDF‐HFP) electrolytes, which show significant improvements in electrochemical performances. Ultralarge capacitance (1132 mF cm?2), high cycling‐stability, and long‐term bending‐durability are achieved based on H3PO4/PVA. Additionally, high energy densities of 95.7–46.9 µWh cm?2 at power densities of 1.5–15 W cm?2 are obtained in EMIBF4/PVDF‐HFP. The key to higher performances stems from microfluidic‐controlled fibers with a uniformly porous network, large specific surface area (388.6 m2 g?1), optimal pyridinic nitrogen (2.44%), and high electric conductivity (30785 S m?1) for faster ion diffusion and flooding accommodation. By taking advantage of these remarkable merits, this study integrates micro‐SCs into flexible and fabric substrates to power audio–visual electronics. The main aim is to clarify the important role of microfluidic techniques toward the architecture of electrodes and promote development of wearable electronics.  相似文献   

14.
Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost‐effective microwave‐assisted method. In order to achieve high energy and power densities, a high‐voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high‐voltage region of 0–1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g?1 and high energy density of 77.8 Wh kg?1. Furthermore, the Ni(OH)2/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems.  相似文献   

15.
Asymmetric supercapacitors with high energy density are fabricated using a self‐assembled reduced graphene oxide (RGO)/MnO2 (GrMnO2) composite as a positive electrode and a RGO/MoO3 (GrMoO3) composite as a negative electrode in safe aqueous Na2SO4 electrolyte. The operation voltage is maximized by choosing two metal oxides with the largest work function difference. Because of the synergistic effects of highly conductive graphene and highly pseudocapacitive metal oxides, the hybrid nanostructure electrodes exhibit better charge transport and cycling stability. The operation voltage is expanded to 2.0 V in spite of the use of aqueous electrolyte, revealing a high energy density of 42.6 Wh kg?1 at a power density of 276 W kg?1 and a maximum specific capacitance of 307 F g?1, consequently giving rise to an excellent Ragone plot. In addition, the GrMnO2//GrMoO3 supercapacitor exhibits improved capacitance with cycling up to 1000 cycles, which is explained by the development of micropore structures during the repetition of ion transfer. This strategy for the choice of metal oxides provides a promising route for next‐generation supercapacitors with high energy and high power densities.  相似文献   

16.
Graphene derivatives are promising candidates as electrode materials in supercapacitor cells, therefore, functionalization strategies are pursued to improve their performance. A scalable approach is reported for preparing a covalently and homogenously functionalized graphene with iron tetraaminophthalocyanine (FePc‐NH2) with a high degree of functionalization. This is achieved by exploiting fluorographene's reactivity with the diethyl bromomalonate, producing graphene‐dicarboxylic acid after hydrolysis, which is conjugated with FePc‐NH2. The material exhibits an ultrahigh gravimetric specific capacitance of 960 F g?1 at 1 A g?1 and zero losses upon charging–discharging cycling. The energy density of 59 Wh kg?1 is eminent among supercapacitors operating in aqueous electrolytes with graphene‐based electrode materials. This is attributed to the structural and functional synergy of the covalently bound components, giving rise to a zwitterionic surface with extensive π–π stacking, but not graphene restacking, all being very beneficial for charge and ionic transport. The safety of the proposed system, owing to the benign Na2SO4 aqueous electrolyte, the high capacitance, energy density, and potential of preparing the electrode material on a large‐scale and at low cost make the reported strategy very attractive for development of supercapacitors based on the covalent attachment of suitable molecules onto graphene toward high‐synergy hybrids.  相似文献   

17.
The miniaturization of energy storage units is pivotal for the development of next‐generation portable electronic devices. Micro‐supercapacitors (MSCs) hold great potential to work as on‐chip micro‐power sources and energy storage units complementing batteries and energy harvester systems. Scalable production of supercapacitor materials with cost‐effective and high‐throughput processing methods is crucial for the widespread application of MSCs. Here, wet‐jet milling exfoliation of graphite is reported to scale up the production of graphene as a supercapacitor material. The formulation of aqueous/alcohol‐based graphene inks allows metal‐free, flexible MSCs to be screen‐printed. These MSCs exhibit areal capacitance (Careal) values up to 1.324 mF cm?2 (5.296 mF cm?2 for a single electrode), corresponding to an outstanding volumetric capacitance (Cvol) of 0.490 F cm?3 (1.961 F cm?3 for a single electrode). The screen‐printed MSCs can operate up to a power density above 20 mW cm?2 at an energy density of 0.064 µWh cm?2. The devices exhibit excellent cycling stability over charge–discharge cycling (10 000 cycles), bending cycling (100 cycles at a bending radius of 1 cm) and folding (up to angles of 180°). Moreover, ethylene vinyl acetate‐encapsulated MSCs retain their electrochemical properties after a home‐laundry cycle, providing waterproof and washable properties for prospective application in wearable electronics.  相似文献   

18.
The excellent energy‐storage performance of ceramic capacitors, such as high‐power density, fast discharge speed, and the ability to operate over a broad temperature range, gives rise to their wide applications in different energy‐storage devices. In this work, the (Pb0.98La0.02)(Zr0.55Sn0.45)0.995O3 (PLZS) antiferroelectric (AFE) ceramics are prepared via a unique rolling machine approach. The field‐induced multiphase transitions are observed in polarization–electric field (P–E) hysteresis loops. All the PLZS AFE ceramics possess high energy‐storage densities and discharge efficiency (above 80%) with different sintering temperatures. Of particular significance is that an ultrahigh recoverable energy‐storage density of 10.4 J cm‐3 and a high discharge efficiency of 87% are achieved at 40 kV mm‐1 for PLZS ceramic with a thickness of 0.11 mm, sintered at 1175 °C, which are by far the highest values ever reported in bulk ceramics. Moreover, the corresponding ceramics exhibit a superior discharge current density of 1640 A cm‐2 and ultrafast discharge speed (75 ns discharge period). This great improvement in energy‐storage performance is expected to expand the practical applications of dielectric ceramics in numerous electronic devices.  相似文献   

19.
2D nanoscale oxides have attracted a large amount of research interest due to their unique properties. Here, a facile synthetic approach to prepare graphene‐mimicking, porous 2D Co3O4 nanofoils using graphene oxide (GO) as a sacrificial template is reported. The thermal instability of graphene, as well as the catalytic ability of Co3O4 particles to degrade carbon backbones, allow the fabrication of porous 2D Co3O4 nanofoils without the loss of the 2D nature of GO. Based on these results, a graphene mimicking as a route for large‐area 2D transition metal oxides for applications in electrochemical energy storage devices is proposed. As a proof of concept, it is demonstrated that graphene‐like, porous 2D Co3O4 nanofoils exhibit a high reversible capacity (1279.2 mAh g?1), even after 50 cycles. This capacity is far beyond the theoretical capacity of Co3O4 based on the conversion mechanism from Co3O4 to Li2O and metallic Co.  相似文献   

20.
Potassium‐ion hybrid capacitors (KICs) reconciling the advantages of batteries and supercapacitors have stimulated growing attention for practical energy storage because of the high abundance and low cost of potassium sources. Nevertheless, daunting challenge remains for developing high‐performance potassium accommodation materials due to the large radius of potassium ions. Molybdenum diselenide (MoSe2) has recently been recognized as a promising anode material for potassium‐ion batteries, achieving high capacity and favorable cycling stability. However, KICs based on MoSe2 are scarcely demonstrated by far. Herein, a diatomite‐templated synthetic strategy is devised to fabricate nitrogen‐doped MoSe2/graphene (N‐MoSe2/G) composites with favorable pseudocapacitive potassium storage targeting a superior anode material for KICs. Benefiting from the unique biomorphic structure, high electron/K‐ion conductivity, enriched active sites, and the conspicuous pseudocapacitive effect of N‐MoSe2/G, thus‐derived KIC full‐cell manifests high energy/power densities (maximum 119 Wh kg?1/7212 W kg?1), outperforming those of recently reported KIC counterparts. Furthermore, the potassium storage mechanism of N‐MoSe2/G composite is systematically explored with the aid of first‐principles calculations in combination of in situ X‐ray diffraction and ex situ Raman spectroscopy/transmission electron microscopy/X‐ray photoelectron spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号