首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
This paper presents a direct‐conversion CMOS transceiver for fully digital DS‐UWB systems. The transceiver includes all of the radio building blocks, such as a T/R switch, a low noise amplifier, an I/Q demodulator, a low pass filter, a variable gain amplifier as a receiver, the same receiver blocks as a transmitter including a phase‐locked loop (PLL), and a voltage controlled oscillator (VCO). A single‐ended‐to‐differential converter is implemented in the down‐conversion mixer and a differential‐to‐single‐ended converter is implemented in the driver amplifier stage. The chip is fabricated on a 9.0 mm2 die using standard 0.18 µm CMOS technology and a 64‐pin MicroLead Frame package. Experimental results show the total current consumption is 143 mA including the PLL and VCO. The chip has a 3.5 dB receiver gain flatness at the 660 MHz bandwidth. These results indicate that the architecture and circuits are adaptable to the implementation of a wideband, low‐power, and high‐speed wireless personal area network.  相似文献   

2.
Performance validation of Satcom on‐the‐move (SOTM) terminals is becoming more important as the satellite operators continue to recognize the negative influence of suboptimal terminals on their satellite networks. Traditionally, SOTM testing is performed with actual operational satellites in field tests, which lack repeatability. The capability to repeat the conditions in which SOTM terminals are tested is important, especially when the performance of multiple terminals is compared. This contribution describes how the qualification test of SOTM terminals can be conducted in a laboratory environment so that repeatability can be ensured. A major advantage of a laboratory environment is the ability to test the complete terminal as if it was in the field of operation, yet without the involvement of real satellites effectively reducing the costs of testing. The main contributions of this paper are motion and shadowing profiles suitable for standardization of SOTM testing. Standardization of such profiles is necessary to guarantee a fair comparison of the performance of different terminals. Moreover, the paper presents the methodology for testing SOTM terminals at the Fraunhofer Facility for Over‐the‐air Research and Testing, * * * https://www.iis.fraunhofer.de/en/profil/standorte/forte.html the procedure used to obtain the proposed profiles and results of testing a Ka‐band SOTM terminal, taken as an example.  相似文献   

3.
Through‐silicon via (TSV) technology provides much of the benefits seen in advanced packaging, such as threedimensional integrated circuits and 3D packaging, with shorter interconnection paths for homo‐ and heterogeneous device integration. In TSV, a destructive cross‐sectional analysis of an image from a scanning electron microscope is the most frequently used method for quality control purposes. We propose a quantitative evaluation method for TSV etch profiles whereby we consider sidewall angle, curvature profile, undercut, and scallop. A weighted sum of the four evaluated parameters, nominally total score (TS), is suggested for the numerical evaluation of an individual TSV profile. Uniformity, defined by the ratio of the standard deviation and average of the parameters that comprise TS, is suggested for the evaluation of wafer‐to‐wafer variation in volume manufacturing.  相似文献   

4.
5.
Optical burst switching (OBS) is the most favourable switching paradigm for future all‐optical networks. Burst assembly is the first process in OBS and it consists of aggregating clients packets into bursts. Assembled bursts wait for an offset time before being transmitted to their intended destinations. Offset time is used to allow burst control packet reserve required resources prior to burst arrival. Burst assembly process and offset‐time create extra delay in OBS networks. To make OBS suitable for real time applications, this extra latency needs to be controlled. This paper proposes and evaluates a novel offset time and burst assembly scheme to address this issue. Constant bit rate (CBR) traffic that has stringent end‐to‐end delay QoS requirements is used in this study. The proposed scheme is called hybrid offset‐time and burst assembly algorithm (H‐OTBA). The objective of the paper is achieved by controlling maximum burst transfer delay parameters of CBR. The proposed scheme was evaluated via network simulation. Simulation results demonstrate that, H‐OTBA has effectively reduced end‐to‐end delay for CBR traffic compared with current solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Understanding the complex interplay between the 3D structural hierarchy within thin films of conjugated polymers and the properties of devices based thereon is starting to be recognized as an important challenge in the continued development of these materials for a range of applications. As a result, for example, accurate measurements of molecular orientation and elucidation of its influence on optical characteristics are of significant interest. Here we report an improved optical method to determine both the order parameter and the angle between the polymer backbone director and the optical transition dipole moment for the lowest energy π–π* absorption peak in uniaxially aligned thin films of conjugated polymers. The method uses a combination of polarized Raman spectroscopy and UV‐vis spectroscopy and is based on a general theoretical treatment to describe the expected Raman and optical absorption anisotropies of such films. It is applied to study the orientation within thermotropically aligned films of the electroluminescent fluorene‐based copolymer poly(9,9‐dioctylfluorene‐co‐bithiophene) (F8T2). A more highly axial transition dipole moment is found for the dominant long wavelength absorption peak of F8T2 compared to that of other fluorene‐based (co)polymers. The angle between the polymer backbone director and the transition dipole is estimated to be β ≤ 3°, a deduction that helps to explain the relatively large optical dichroism for aligned films of F8T2 and that offers the prospect of highly polarized electroluminescence from F8T2‐based light‐emitting diodes.  相似文献   

14.
M. Lucia Curri and co‐workers report on p. 2009 an epoxy‐based negative tone photoresist that can be functionalized with red emitting CdSe@ZnS core/shell type nanocrystals and patterned by UV lithography. The 3D high aspect ratio of the microfabricated structures proves that lithographic properties of the functional nanocomposite are retained and the nanocrystals properties conveyed into the resist. The emitting nanocomposite represents a convenient model for material functionalization expandable to nanocrystals with different properties. An epoxy‐based negative‐tone photoresist, which is known as a suitable material for high‐aspect‐ratio surface micromachining, is functionalized with red‐light‐emitting CdSe@ZnS nanocrystals (NCs). The proper selection of a common solvent for the NCs and the resist is found to be critical for the efficient incorporation of the NCs in the epoxy matrix. The NC‐modified resist can be patterned by standard UV lithography down to micrometer‐scale resolution, and high‐aspect‐ratio structures have been successfully fabricated on a 100 mm scaled wafer. The “as‐fabricated”, 3D, epoxy‐based surface microstructures show the characteristic luminescent properties of the embedded NCs, as verified by fluorescence microscopy. This issue demonstrates that the NC emission properties can be conveniently conveyed into the polymer matrix without deteriorating the lithographic performance of the latter. The dimensions, the resolution, and the surface morphology of the NC‐modified‐epoxy microstructures exhibit only minor deviations with respect to that of the unmodified reference material, as examined by means of microscopic and metrologic investigations. The proposed approach of the incorporation of emitting and non‐bleachable NCs into a photoresist opens novel routes for surface patterning of integrated microsystems with inherent photonic functionality at the micro‐ and nanometer‐scale for light sensing and emitting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号