首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bismuth (Bi) is an attractive material as anodes for both sodium‐ion batteries (NIBs) and potassium‐ion batteries (KIBs), because it has a high theoretical gravimetric capacity (386 mAh g?1) and high volumetric capacity (3800 mAh L?1). The main challenges associated with Bi anodes are structural degradation and instability of the solid electrolyte interphase (SEI) resulting from the huge volume change during charge/discharge. Here, a multicore–shell structured Bi@N‐doped carbon (Bi@N‐C) anode is designed that addresses these issues. The nanosized Bi spheres are encapsulated by a conductive porous N‐doped carbon shell that not only prevents the volume expansion during charge/discharge but also constructs a stable SEI during cycling. The Bi@N‐C exhibits unprecedented rate capability and long cycle life for both NIBs (235 mAh g?1 after 2000 cycles at 10 A g?1) and KIBs (152 mAh g?1 at 100 A g?1). The kinetic analysis reveals the outstanding electrochemical performance can be attributed to significant pseudocapacitance behavior upon cycling.  相似文献   

2.
Potassium‐ion batteries (KIBs) are new‐concept of low‐cost secondary batteries, but the sluggish kinetics and huge volume expansion during cycling, both rooted in the size of large K ions, lead to poor electrochemical behavior. Here, a bamboo‐like MoS2/N‐doped‐C hollow tubes are presented with an expanded interlayer distance of 10 Å as a high‐capacity and stable anode material for KIBs. The bamboo‐like structure provides gaps along axial direction in addition to inner cylinder hollow space to mitigate the strains in both radial and vertical directions that ultimately leads to a high structural integrity for stable long‐term cycling. Apart from being a constituent of the interstratified structure the N‐doped‐C layers weave a cage to hold the potassiation products (polysulfide and the Mo nanoparticles) together, thereby effectively hindering the continuing growth of solid electrolyte interphase in the interior of particles. The density functional theory calculations prove that the MoS2/N‐doped‐C atomic interface can provide an additional attraction toward potassium ion. As a result, it delivers a high capacity at a low current density (330 mAh g?1 at 50 mA g?1 after 50 cycles) and a high‐capacity retention at a high current density (151 mAh g?1 at 500 mA g?1 after 1000 cycles).  相似文献   

3.
Transition metal oxides, possessing high theoretical specific capacities, are promising anode materials for sodium‐ion batteries. However, the sluggish sodiation/desodiation kinetics and poor structural stability restrict their electrochemical performance. To achieve high and fast Na storage capability, in this work, rambutan‐like hybrid hollow spheres of carbon confined Co3O4 nanoparticles are synthesized by a facile one‐pot hydrothermal treatment with postannealing. The hierarchy hollow structure with ultrafine Co3O4 nanoparticles embedded in the continuous carbon matrix enables greatly enhanced structural stability and fast electrode kinetics. When tested in sodium‐ion batteries, the hollow structured composite electrode exhibits an outstandingly high reversible specific capacity of 712 mAh g?1 at a current density of 0.1 A g?1, and retains a capacity of 223 mAh g?1 even at a large current density of 5 A g?1. Besides the superior Na storage capability, good cycle performance is demonstrated for the composite electrode with 74.5% capacity retention after 500 cycles, suggesting promising application in advanced sodium‐ion batteries.  相似文献   

4.
Sodium‐ion batteries (SIBs) are considered as promising alternatives to lithium‐ion batteries (LIBs) for energy storage due to the abundance of sodium, especially for grid distribution systems. The practical implementation of SIBs, however, is severely hindered by their low energy density and poor cycling stability due to the poor electrochemical performance of the existing electrodes. Here, to achieve high‐capacity and durable sodium storage with good rate capability, hierarchical hollow NiS spheres with porous shells composed of nanoparticles are designed and synthesized by tuning the reaction parameters. The formation mechanism of this unique structure is systematically investigated, which is clearly revealed to be Ostwald ripening mechanism on the basis of the time‐dependent morphology evolution. The hierarchical hollow structure provides sufficient electrode/electrolyte contact, shortened Na+ diffusion pathways, and high strain‐tolerance capability. The hollow NiS spheres deliver high reversible capacity (683.8 mAh g?1 at 0.1 A g?1), excellent rate capability (337.4 mAh g?1 at 5 A g?1), and good cycling stability (499.9 mAh g?1 with 73% retention after 50 cycles at 0.1 A g?1).  相似文献   

5.
Lithium‐ion, sodium‐ion, and potassium‐ion batteries have captured tremendous attention in power supplies for various electric vehicles and portable electronic devices. However, their practical applications are severely limited by factors such as poor rate capability, fast capacity decay, sluggish charge storage dynamics, and low reversibility. Herein, hetero‐structured bimetallic sulfide (NiS/FeS) encapsulated in N‐doped porous carbon cubes interconnected with CNTs (Ni‐Fe‐S‐CNT) are prepared through a convenient co‐precipitation and post‐heat treatment sulfurization technique of the corresponding Prussian‐blue analogue nanocage precursor. This special 3D hierarchical structure can offer a stable interconnect and conductive network and shorten the diffusion path of ions, thereby greatly enhancing the mobility efficiency of alkali (Li, Na, K) ions in electrode materials. The Ni‐Fe‐S‐CNT nanocomposite maintains a charge capacity of 1535 mAh g?1 at 0.2 A g?1 for lithium ion batteries, 431 mAh g?1 at 0.1 A g?1 for sodium ion batteries, and 181 mAh g?1 at 0.1 A g?1 for potassium‐ion batteries, respectively. The high performance is mainly attributed to the 3D hierarchically high‐conductivity network architecture, in which the hetero‐structured FeS/NiS nanocubes provide fast Li+/Na+/K+ insertion/extraction and reduced ion diffusion paths, and the distinctive 3D networks maintain the electrical contact and guarantee the structural integrity.  相似文献   

6.
On account of increasing demand for energy storage devices, sodium‐ion batteries (SIBs) with abundant reserve, low cost, and similar electrochemical properties have the potential to partly replace the commercial lithium‐ion batteries. In this study, a facile metal‐organic framework (MOF)‐derived selenidation strategy to synthesize in situ carbon‐encapsulated selenides as superior anode for SIBs is rationally designed. These selenides with particular micro‐ and nanostructured features deliver ultrastable cycling performance at high charge–discharge rate and demonstrate ultraexcellent rate capability. For example, the uniform peapod‐like Fe7Se8@C nanorods represent a high specific capacity of 218 mAh g?1 after 500 cycles at 3 A g?1 and the porous NiSe@C spheres display a high specific capacity of 160 mAh g?1 after 2000 cycles at 3 A g?1. The current simple MOF‐derived method could be a promising strategy for boosting the development of new functional inorganic materials for energy storage, catalysis, and sensors.  相似文献   

7.
Robust composite structures consisting of Fe3O4 nanoparticles (~5 nm) embedded in mesoporous carbon spheres with an average size of about 70 nm (IONP@mC) are synthesized by a facile two‐step method: uniform Fe3O4 nanoparticles are first synthesized followed by a post‐synthetic low‐temperature hydrothermal step to encapsulate them in mesoporous carbon spheres. Instead of graphene which has been extensively reported for use in high‐rate battery applications as a carbonaceous material combined with metal oxides mesoporous carbon is chosen to enhance the overall performances. The interconnecting pores facilitate the penetration of electrolyte leading to direct contact between electrochemically active Fe3O4 and lithium ion‐carrying electrolyte greatly facilitating lithium ion transportation. The interconnecting carbon framework provides continuous 3D electron transportation routes. The anodes fabricated from IONP@mC are cycled under high current densities ranging from 500 to 10 000 mA g?1. A high reversible capacity of 271 mAh g?1 is reached at 10 000 mAh g?1 demonstrating its superior high rate performance.  相似文献   

8.
As an anode material for lithium‐ion batteries, titanium dioxide (TiO2) shows good gravimetric performance (336 mAh g?1 for LiTiO2) and excellent cyclability. To address the poor rate behavior, slow lithium‐ion (Li+) diffusion, and high irreversible capacity decay, TiO2 nanomaterials with tuned phase compositions and morphologies are being investigated. Here, a promising material is prepared that comprises a mesoporous “yolk–shell” spherical morphology in which the core is anatase TiO2 and the shell is TiO2(B). The preparation employs a NaCl‐assisted solvothermal process and the electrochemical results indicate that the mesoporous yolk–shell microspheres have high specific reversible capacity at moderate current (330.0 mAh g?1 at C/5), excellent rate performance (181.8 mAh g?1 at 40C), and impressive cyclability (98% capacity retention after 500 cycles). The superior properties are attributed to the TiO2(B) nanosheet shell, which provides additional active area to stabilize the pseudocapacity. In addition, the open mesoporous morphology improves diffusion of electrolyte throughout the electrode, thereby contributing directly to greatly improved rate capacity.  相似文献   

9.
A facile one‐step spraying synthesis of MoS2/C microspheres and their enhanced electrochemical performance as anode of sodium‐ion batteries is reported. An aerosol spraying pyrolysis without any template is employed to synthesize MoS2/C microspheres, in which ultrathin MoS2 nanosheets (≈2 nm) with enlarged interlayers (≈0.64 nm) are homogeneously embedded in mesoporous carbon microspheres. The as‐synthesized mesoporous MoS2/C microspheres with 31 wt% carbon have been applied as an anode material for sodium ion batteries, demonstrating long cycling stability (390 mAh g?1 after 2500 cycles at 1.0 A g?1) and high rate capability (312 mAh g?1 at 10.0 A g?1 and 244 mAh g?1 at 20.0 A g?1). The superior electrochemical performance is due to the uniform distribution of ultrathin MoS2 nanosheets in mesoporous carbon frameworks. This kind of structure not only effectively improves the electronic and ionic transport through MoS2/C microspheres, but also minimizes the influence of pulverization and aggregation of MoS2 nanosheets during repeated sodiation and desodiation.  相似文献   

10.
Potassium‐ion batteries (PIBs) are currently drawing increased attention as a promising alternative to lithium‐ion batteries (LIBs) owing to the abundant resource and low cost of potassium. However, due to the large ionic radius size of K+, electrode material that can stably maintain K+ insertion/deintercalation is still extremely inadequate, especially for anode material with a satisfactory reversible capacity. As an attempt, nitrogen/carbon dual‐doped hierarchical NiS2 is introduced as the electrode material in PIBs for the first time. Considering that the introduction of the carbon layer effectively alleviates the volume expansion of the material itself, further improves the electronic conductivity, and finally accelerates the charge transfer of K+, not surprisingly, NiS2 decorated with the bifunctional carbon (NiS2@C@C) material electrode shows excellent potassium storage performances. When utilized as a PIB anode, it delivers a high reversible capacity of 302.7 mAh g?1 at 50 mA g?1 after 100 cycles. The first coulombic efficiency is 78.6% and rate performance is 151.2 mAh g?1 at 1.6 A g?1 of the NiS2@C@C, which are also notable. Given such remarkable electrochemical properties, this work is expected to provide more possibilities for the reasonable design of advanced electrode materials for metal sulfide potassium ion batteries.  相似文献   

11.
This work studies for the first time the metallic 1T MoS2 sandwich grown on graphene tube as a freestanding intercalation anode for promising sodium‐ion batteries (SIBs). Sodium is earth‐abundant and readily accessible. Compared to lithium, the main challenge of sodium‐ion batteries is its sluggish ion diffusion kinetic. The freestanding, porous, hollow structure of the electrode allows maximum electrolyte accessibility to benefit the transportation of Na+ ions. Meanwhile, the metallic MoS2 provides excellent electron conductivity. The obtained 1T MoS2 electrode exhibits excellent electrochemical performance: a high reversible capacity of 313 mAh g?1 at a current density of 0.05 A g?1 after 200 cycles and a high rate capability of 175 mAh g?1 at 2 A g?1. The underlying mechanism of high rate performance of 1T MoS2 for SIBs is the high electrical conductivity and excellent ion accessibility. This study sheds light on using the 1T MoS2 as a novel anode for SIBs.  相似文献   

12.
Tin oxide‐based materials attract increasing attention as anodes in lithium‐ion batteries due to their high theoretical capacity, low cost, and high abundance. Composites of such materials with a carbonaceous matrix such as graphene are particularly promising, as they can overcome the limitations of the individual materials. The fabrication of antimony‐doped tin oxide (ATO)/graphene hybrid nanocomposites is described with high reversible capacity and superior rate performance using a microwave assisted in situ synthesis in tert‐butyl alcohol. This reaction enables the growth of ultrasmall ATO nanoparticles with sizes below 3 nm on the surface of graphene, providing a composite anode material with a high electric conductivity and high structural stability. Antimony doping results in greatly increased lithium insertion rates of this conversion‐type anode and an improved cycling stability, presumably due to the increased electrical conductivity. The uniform composites feature gravimetric capacity of 1226 mAh g?1 at the charging rate 1C and still a high capacity of 577 mAh g?1 at very high charging rates of up to 60C, as compared to 93 mAh g?1 at 60C for the undoped composite synthesized in a similar way. At the same time, the antimony‐doped anodes demonstrate excellent stability with a capacity retention of 77% after 1000 cycles.  相似文献   

13.
High capacity cathode materials for long‐life rechargeable lithium batteries are urgently needed. Selenium cathode has recently attracted great research attention due to its comparable volumetric capacity to but much better electrical conductivity than widely studied sulfur cathode. However, selenium cathode faces similar issues as sulfur (i.e., shuttling of polyselenides, volumetric expansion) and high performance lithium‐selenium batteries (Li–Se) have not yet been demonstrated at selenium loading >60% in the electrode. In this work, a 3D mesoporous carbon nanoparticles and graphene hierarchical architecture to storage selenium as binder‐free cathode material (Se/MCN‐RGO) for high energy and long life Li–Se batteries is presented. Such architecture not only provides the electrode with excellent electrical and ionic conductivity, but also efficiently suppresses polyselenides shuttling and accommodates volume change during charge/discharge. At selenium content of 62% in the entire cathode, the free‐standing Se/MCN‐RGO exhibits high discharge capacity of 655 mAh g?1 at 0.1 C (97% of theoretical capacity) and long cycling stability with a very small capacity decay of 0.008% per cycle over 1300 cycles at 1 C. The present report demonstrates significant progress in the development of high capacity cathode materials for long‐life Li batteries and flexible energy storage device.  相似文献   

14.
Urchin‐shaped NiCo2Se4 (u‐NCSe) nanostructures as efficient sulfur hosts are synthesized to overcome the limitations of lithium–sulfur batteries (LSBs). u‐NCSe provides a beneficial hollow structure to relieve volumetric expansion, a superior electrical conductivity to improve electron transfer, a high polarity to promote absorption of lithium polysulfides (LiPS), and outstanding electrocatalytic activity to accelerate LiPS conversion kinetics. Owing to these excellent qualities as cathode for LSBs, S@u‐NCSe delivers outstanding initial capacities up to 1403 mAh g?1 at 0.1 C and retains 626 mAh g?1 at 5 C with exceptional rate performance. More significantly, a very low capacity decay rate of only 0.016% per cycle is obtained after 2000 cycles at 3 C. Even at high sulfur loading (3.2 mg cm?2), a reversible capacity of 557 mAh g?1 is delivered after 600 cycles at 1 C. Density functional theory calculations further confirm the strong interaction between NCSe and LiPS, and cytotoxicity measurements prove the biocompatibility of NCSe. This work not only demonstrates that transition metal selenides can be promising candidates as sulfur host materials, but also provides a strategy for the rational design and the development of LSBs with long‐life and high‐rate electrochemical performance.  相似文献   

15.
Sodium ion batteries (SIBs) are a promising alternative to lithium ion batteries for a broader range of energy storage applications in the future. However, the development of high‐performance anode materials is a bottleneck of SIBs advancement. In this work, Sb2Se3 nanorods uniformly wrapped by reduced graphene oxide (rGO) as a promising anode material for SIBs are reported. The results show that such Sb2Se3/rGO hybrid anode yields a high reversible mass‐specific energy capacity of 682, 448, and 386 mAh g?1 at a rate of 0.1, 1.0, and 2.0 A g?1, respectively, and sustains at least 500 stable cycles at a rate of 1.0 A g?1 with an average mass‐specific energy capacity of 417 mAh g?1 and capacity retention of 90.2%. In situ X‐ray diffraction study on a live SIB cell reveals that the observed high performance is a result of the combined Na+ intercalation, conversion reaction between Na+ and Se, and alloying reaction between Na+ and Sb. The presence of rGO also plays a key role in achieving high rate capacity and cycle stability by providing good electrical conductivity, tolerant accommodation to volume change, and strong electron interactions to the base Sb2Se3 anode.  相似文献   

16.
Na‐ion Batteries have been considered as promising alternatives to Li‐ion batteries due to the natural abundance of sodium resources. Searching for high‐performance anode materials currently becomes a hot topic and also a great challenge for developing Na‐ion batteries. In this work, a novel hybrid anode is synthesized consisting of ultrafine, few‐layered SnS2 anchored on few‐layered reduced graphene oxide (rGO) by a facile solvothermal route. The SnS2/rGO hybrid exhibits a high capacity, ultralong cycle life, and superior rate capability. The hybrid can deliver a high charge capacity of 649 mAh g?1 at 100 mA g?1. At 800 mA g?1 (1.8 C), it can yield an initial charge capacity of 469 mAh g?1, which can be maintained at 89% and 61%, respectively, after 400 and 1000 cycles. The hybrid can also sustain a current density up to 12.8 A g?1 (≈28 C) where the charge process can be completed in only 1.3 min while still delivering a charge capacity of 337 mAh g?1. The fast and stable Na‐storage ability of SnS2/rGO makes it a promising anode for Na‐ion batteries.  相似文献   

17.
Rechargeable batteries with flexibility can find tremendous applications in wearable and bendable electronics. One central mission for the advancement of such high‐performance batteries is the exploration of flexible anodes with electrochemical and mechanical robustness. Herein reported is a robust and flexible sodium‐ion anode based on self‐supported hematite nanoarray grown on carbon cloth. The ammonia treatment that results in dual doping of both nitrogen and low‐valent iron renders surface reactivity and electric conductivity to the material. The dual‐doped hematite arrays afford a robust activity for sodium storage, exhibiting reversible capacities of 895 and 382 mAh g?1 at current rates of 0.1 and 5 A g?1, respectively, or 615 and 356 mAh g?1 by removing the contribution of the substrate. They also sustain 85% of the initial capacity upon 200 cycles at 0.2 A g?1. To demonstrate the flexibility, full cells composed of a hematite array anode and Na3V2(PO4)3/C cathode are assembled. The cell is capable of affording an energy density of 201 Wh kg?1 and sustaining repeated bending without performance decay, demonstrating a significant potential in practical application.  相似文献   

18.
Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous NixCo3?xO4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni‐MOFs are prepared by a one‐step facile microwave‐assisted solvothermal method rather than surface metallic cation exchange on the preformed one‐metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni0.3Co2.7O4 nanorod delivers a larger‐than‐theoretical reversible capacity of 1410 mAh g?1 after 200 repetitive cycles at a small current of 100 mA g?1 with an excellent high‐rate capability for lithium‐ion batteries. Large reversible capacities of 812 and 656 mAh g?1 can also be retained after 500 cycles at large currents of 2 and 5 A g?1, respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle‐integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components.  相似文献   

19.
The lithium–sulfur (Li–S) battery is regarded as the most promising rechargeable energy storage technology for the increasing applications of clean energy transportation systems due to its remarkable high theoretical energy density of 2.6 kWh kg?1, considerably outperforming today's lithium‐ion batteries. Additionally, the use of sulfur as active cathode material has the advantages of being inexpensive, environmentally benign, and naturally abundant. However, the insulating nature of sulfur, the fast capacity fading, and the short lifespan of Li–S batteries have been hampered their commercialization. In this paper, a functional mesoporous carbon‐coated separator is presented for improving the overall performance of Li–S batteries. A straightforward coating modification of the commercial polypropylene separator allows the integration of a conductive mesoporous carbon layer which offers a physical place to localize dissolved polysulfide intermediates and retain them as active material within the cathode side. Despite the use of a simple sulfur–carbon black mixture as cathode, the Li–S cell with a mesoporous carbon‐coated separator offers outstanding performance with an initial capacity of 1378 mAh g?1 at 0.2 C, and high reversible capacity of 723 mAh g?1, and degradation rate of only 0.081% per cycle, after 500 cycles at 0.5 C.  相似文献   

20.
Orthorhombic Nb2O5 (T‐Nb2O5) has recently attracted great attention for its application as an anode for sodium ion batteries (NIBs) owing to its patulous framework and larger interplanar lattice spacing. Sulfur‐doped T‐Nb2O5 hollow nanospheres (diameter:180 nm) uniformly encapsulate into sulfur‐doped graphene networks (denoted: S‐Nb2O5 HNS@S‐rGO) using hard template method. The 3D ordered porous structure not only provides good electronic transportation path but also offers outstanding ionic conductive channels, leading to an improved sodium storage performance. In addition, the introduction of sulfur to graphene and Nb2O5 leads to oxygen vacancy and enhanced electronic conductivity. The sodium storage performance of S‐Nb2O5 HNS@S‐rGO is unprecedented. It delivers a reversible capacity 215 mAh g?1 at 0.5 C over 100 cycles. In addition, it also possesses a great high‐rate capability, retaining a stable capacity of 100 mAh g?1 at 20 C after 3000 cycles. This design demonstrates the potential applications of Nb2O5 as anode for high performance NIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号