首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Solution‐processed indium‐gallium‐zinc oxide (IGZO) thin film transistors (TFTs) have become well known in recent decades for their promising commercial potential. However, the unsatisfactory performance of small‐sized IGZO TFTs is limiting their applicability. To address this issue, this work introduces an interface engineering method of bi‐functional acid modification to regulate the interfaces between electrodes and the channels of IGZO TFTs. This method increases the interface oxygen vacancy concentration and reduces the surface roughness, resulting in higher mobility and enhanced contact at the interfaces. The TFT devices thus treated display contact resistance reduction from 9.1 to 2.3 kΩmm, as measured by the gated four‐probe method, as well as field‐effect mobility increase from 1.5 to 4.5 cm2 (V s)?1. Additionally, a 12 × 12 organic light emitting diode display constructed using the acid modified IGZO TFTs as switching and driving elements demonstrate the applicability of these devices.  相似文献   

2.
Amorphous oxide semiconductor (AOS) thin film transistors (TFTs) have found cutting‐edge applications in sensor technologies. To reduce manufacturing costs, sensors, analog front end, and digital signal processing circuits need to be integrated on the identical substrate. Unlike traditional silicon‐based devices, optimizations for locally controllable electrical parameters of the AOSs have rarely been investigated. Here, photoactivated combustion reduction is utilized as doping motivation for solution‐processed amorphous indium–gallium–zinc oxide (a‐IGZO) to tune their electrical performance. By controlling parameters of a‐IGZO TFTs, which can be partly doped with covering the desired area of the identical substrate, it is possible to match the particular threshold voltage for various circuits. For circuit optimization, automatic integrated circuit modeling spice is carried out to find the best match of the complementary metal–oxide semiconductor circuits. Finally, the site‐specific performance of switching TFTs, amplifiers, and ring oscillators implemented with low‐temperature solution‐processed a‐IGZO and p‐type single‐walled carbon nanotube TFTs is demonstrated. The optical‐doped a‐IGZO TFTs exhibiting a saturation mobility of >9.15 cm2 V?1 s?1 with a locally tunable threshold voltage of ?5 – 1.5 V are realized, enabling monolithic integration of functional devices. The resultant circuits demonstrate excellent amplification of 24 dB and an oscillation frequency of 12 kHz for 7‐stage ring oscillators.  相似文献   

3.
Enhancing the efficiency and lifetime of light emitting electrochemical cells (LEC) is the most important challenge on the way to energy efficient lighting devices of the future. To avail this, emissive Ir(III) complexes with fluoro‐substituted cyclometallated ligands and electron donating groups (methyl and tert ‐butyl)‐substituted diimine ancillary (N^N) ligands and their associated LEC devices are studied. Four different complexes of general composition [Ir(4ppy)2(N^N)][PF6] (4Fppy = 2‐(4‐fluorophenyl)pyridine) with the N^N ligand being either 2,2′‐bipyridine ( 1 ), 4.4′‐dimethyl‐2,2′‐bipyridine ( 2 ), 5.5′‐dimethyl‐2,2′‐bipyridine ( 3 ), or 4.4′‐di‐tert ‐butyl‐2,2′‐bipyridine ( 4 ) are synthesized and characterized. All complexes emit in the green region of light with emission maxima of 529–547 nm and photoluminescence quantum yields in the range of 50.6%–59.9%. LECs for electroluminescence studies are fabricated based on these complexes. The LEC based on ( 1 ) driven under pulsed current mode demonstrated the best performance, reaching a maximum luminance of 1605 cd m?2 resulting in 16 cd A?1 and 8.6 lm W?1 for current and power efficiency, respectively, and device lifetime of 668 h. Compared to this, LECs based on ( 3 ) and ( 4 ) perform lower, with luminance and lifetime of 1314 cd m?2, 45.7 h and 1193 cd m?2, 54.9 h, respectively. Interestingly, in contrast to common belief, the fluorine content of the Ir‐iTMCs does not adversely affect the LEC performance, but rather electron donating substituents on the N^N ligands are found to dramatically reduce both performance and stability of the green LECs. In light of this, design concepts for green light emitting electrochemical devices have to be reconsidered.  相似文献   

4.
Making small nanograins in polycrystalline organic–inorganic halide perovskite (OIHP) films is critical to improving the luminescent efficiency in perovskite light‐emitting diodes (PeLEDs). 3D polycrystalline OIHPs have fundamental limitations related to exciton binding energy and exciton diffusion length. At the same time, passivating the defects at the grain boundaries is also critical when the grain size becomes smaller. Molecular additives can be incorporated to shield the nanograins to suppress defects at grain boundaries; however, unevenly distributed molecular additives can cause imbalanced charge distribution and inefficient local defect passivation in polycrystalline OIHP films. Here, a kinetically controlled polycrystalline organic‐shielded nanograin (OSN) film with a uniformly distributed organic semiconducting additive (2,2′,2′′‐(1,3,5‐benzinetriyl)‐tris(1‐phenyl‐1‐H‐benzimidazole), TPBI) is developed mimicking core–shell nanoparticles. The OSN film causes improved photophysical and electroluminescent properties with improved light out‐coupling by possessing a low refractive index. Finally, highly improved electroluminescent efficiencies of 21.81% ph el?1 and 87.35 cd A?1 are achieved with a half‐sphere lens and four‐time increased half‐lifetime in polycrystalline PeLEDs. This strategy to make homogeneous, defect‐healed polycrystalline core–shell‐mimicked nanograin film with better optical out‐coupling will provide a simple and efficient way to make highly efficient perovskite polycrystal films and their optoelectronics devices.  相似文献   

5.
The effect of active layer (amorphous indium–gallium–zinc oxide, a‐IGZO) splitting on the performances of back‐channel‐etched (BCE) and etch‐stopper (ES) thin‐film transistors (TFTs) on polyimide substrate is studied. While the performance of BCE TFT is independent of active layer splitting, the performance of ES TFT is improved significantly by splitting the active layer into 2–4 µm width along the channel. The saturation mobility is enhanced from 24.3 to 76.8 cm2 V?1 s?1 and this improvement is confirmed by the operation of a ring oscillator made of the split TFTs also. X‐ray photoelectron spectroscopy (XPS) analysis of the split a‐IGZO indicates the incorporation of F at the island interface and thus improves the top interface quality, leading to a significant improvement of the top channel TFT mobility from 0.25 to 24.22 cm2 V?1 s?1. This improvement is correlated with bonding of In with F at the top interface according to XPS results. The bias stability, hysteresis, and mechanical stability of the ES a‐IGZO TFT are also remarkably improved by splitting a‐IGZO active layer.  相似文献   

6.
A specially designed n‐type semiconductor consisting of Ca‐doped ZnO (CZO) nanoparticles is used as the electron transport layer (ETL) in high‐performance multicolor perovskite light‐emitting diodes (PeLEDs) fabricated using an all‐solution process. The band structure of the ZnO is tailored via Ca doping to create a cascade of conduction energy levels from the cathode to the perovskite. This energy band alignment significantly enhances conductivity and carrier mobility in the CZO ETL and enables controlled electron injection, giving rise to sub‐bandgap turn‐on voltages of 1.65 V for red emission, 1.8 V for yellow, and 2.2 V for green. The devices exhibit significantly improved luminance yields and external quantum efficiencies of, respectively, 19 cd A?1 and 5.8% for red emission, 16 cd A?1 and 4.2% for yellow, and 21 cd A?1 and 6.2% for green. The power efficiencies of these multicolor devices demonstrated in this study, 30 lm W?1 for green light‐emitting PeLED, 28 lm W?1 for yellow, and 36 lm W?1 for red are the highest to date reported. In addition, the perovskite layers are fabricated using a two‐step hot‐casting technique that affords highly continuous (>95% coverage) and pinhole‐free thin films. By virtue of the efficiency of the ETL and the uniformity of the perovskite film, high brightnesses of 10 100, 4200, and 16,060 cd m?2 are demonstrated for red, yellow, and green PeLEDs, respectively. The strategy of using a tunable ETL in combination with a solution process pushes perovskite‐based materials a step closer to practical application in multicolor light‐emitting devices.  相似文献   

7.
A series of compounds containing arylamine and 1,2‐diphenyl‐1H‐benz[d]imidazole moieties are developed as ambipolar, blue‐emitting materials with tunable blue‐emitting wavelengths, tunable ambipolar carrier‐transport properties and tunable triplet energy gaps. These compounds possess several novel properties: (1) they emit in the blue region with high quantum yields; (2) they have high morphological stability and thermal stability; (3) they are capable of ambipolar carrier transport; (4) they possess tunable triplet energy gaps, suitable as hosts for yellow‐orange to green phosphors. The electron and hole mobilities of these compounds lie in the range of 0.68–144 × 10?6 and 0.34–147 × 10?6 cm2 V?1 s?1, respectively. High‐performance, single‐layer, blue‐emitting, fluorescent organic light‐emitting diodes (OLEDs) are achieved with these ambipolar materials. High‐performance, single‐layer, phosphorescent OLEDs with yellow‐orange to green emission are also been demonstrated using these ambipolar materials, which have different triplet energy gaps as the host for yellow‐orange‐emitting to green‐emitting iridium complexes. When these ambipolar, blue‐emitting materials are lightly doped with a yellow‐orange‐emitting iridium complex, white organic light‐emitting diodes (WOLEDs) can be achieved, as well by the use of the incomplete energy transfer between the host and the dopant.  相似文献   

8.
Flexible thermoelectric (TE) devices hold great promise for energy harvesting and cooling applications, with increasing significance to serve as perpetual power sources for flexible electronics and wearable devices. Despite unique and superior TE properties widely reported in nanocrystals, transforming these nanocrystals into flexible and functional forms remains a major challenge. Herein, demonstrated is a transformative 3D conformal aerosol jet printing and rapid photonic sintering process to print and sinter solution‐processed Bi2Te2.7Se0.3 nanoplate inks onto virtually any flexible substrates. Within seconds of photonic sintering, the electrical conductivity of the printed film is dramatically improved from nonconductive to 2.7 × 104 S m?1. The films demonstrate a room temperature power factor of 730 µW m?1 K?2, which is among the highest values reported in flexible TE films. Additionally, the film shows negligible performance changes after 500 bending cycles. The highly scalable and low‐cost fabrication process paves the way for large‐scale manufacturing of flexible devices using a variety of high‐performing nanoparticle inks.  相似文献   

9.
The fabrication of all‐transparent flexible vertical Schottky barrier (SB) transistors and logic gates based on graphene–metal oxide–metal heterostructures and ion gel gate dielectrics is demonstrated. The vertical SB transistor structure is formed by (i) vertically sandwiching a solution‐processed indium‐gallium‐zinc‐oxide (IGZO) semiconductor layer between graphene (source) and metallic (drain) electrodes and (ii) employing a separate coplanar gate electrode bridged with a vertical channel through an ion gel. The channel current is modulated by tuning the Schottky barrier height across the graphene–IGZO junction under an applied external gate bias. The ion gel gate dielectric with high specific capacitance enables modulation of the Schottky barrier height at the graphene–IGZO junction over 0.87 eV using a voltage below 2 V. The resulting vertical devices show high current densities (18.9 A cm?2) and on–off current ratios (>104) at low voltages. The simple structure of the unit transistor enables the successful fabrication of low‐power logic gates based on device assemblies, such as the NOT, NAND, and NOR gates, prepared on a flexible substrate. The facile, large‐area, and room‐temperature deposition of both semiconducting metal oxide and gate insulators integrates with transparent and flexible graphene opens up new opportunities for realizing graphene‐based future electronics.  相似文献   

10.
Pressure sensors have attracted tremendous attention because of their potential applications in the fields of health monitoring, human–machine interfaces, artificial intelligence, and so on. Improving pressure‐sensing performances, especially the sensitivity and the detection limit, is of great importance to expand the related applications, however it is still an enormous challenge so far. Herein, highly sensitive piezoresistive pressure sensors are reported with novel light‐boosting sensing performances. Rose petal–templated positive multiscale millimeter/micro/nanostructures combined with surface wrinkling nanopatterns endow the assembled pressure sensors with outstanding pressure sensing performance, e.g. an ultrahigh sensitivity (70 KPa?1, <0.5 KPa), an ultralow detection limit (0.88 Pa), a wide pressure detect ion range (from 0.88 Pa to 32 KPa), and a fast response time (30 ms). Remarkably, simple light illumination further enhances the sensitivity to 120 KPa?1 (<0.5 KPa) and lowers the detection limit to 0.41 Pa. Furthermore, the flexible light illumination offers unprecedented capabilities to spatiotemporally control any target in multiplexed pressure sensors for optically enhanced/tailorable sensing performances. This light‐control strategy coupled with the introduction of bioinspired multiscale structures is expected to help design next generation advanced wearable electronic devices for unprecedented smart applications.  相似文献   

11.
To date, there have been no efficient semiconductor light emitters operating in the green and amber wavelengths. This study reports on the synthesis of InGaN nanowire photonic crystals, including dot‐in‐nanowires, nanotriangles, and nanorectangles with precisely controlled size, spacing, and morphology, and further demonstrates that bottom‐up InGaN photonic crystals can exhibit highly efficient and stable emission. The formation of stable and scalable band edge modes in defect‐free InGaN nanowire photonic crystals is directly measured by cathodoluminescence studies. The luminescence emission, in terms of both the peak position (λ ≈ 505 nm) and spectral linewidths (full‐width‐half‐maximum ≈ 12 nm), remains virtually invariant in the temperature range of 5–300 K and under excitation densities of 29 W cm?2 to 17.5 kW cm?2. To the best of our knowledge, this is the first demonstration of the absence of Varshni and quantum‐confined Stark effects in wurtzite InGaN light emitters—factors that contribute significantly to the efficiency droop and device instability under high‐power operation. Such distinct emission properties of InGaN photonic crystals stem directly from the strong Purcell effect, due to efficient coupling of the spontaneous emission to the highly stable and scalable band‐edge modes of InGaN photonic crystals, and are ideally suited for uncooled, high‐efficiency light‐emitting‐diode operation.  相似文献   

12.
A pyridine‐containing anthracene derivative, 9,10‐bis(3‐(pyridin‐3‐yl)phenyl)anthracene (DPyPA), which comprehensively outperforms the widely used electron‐transport material (ETM), tris(8‐quinolinolato) aluminum (Alq3), is synthesized. DPyPA exhibits ambipolar transport properties, with both electron and hole mobilities of around 10?3 cm?2 V?1 s?1; about two orders of magnitude higher than that of Alq3. The nitrogen atom in the pyridine ring of DPyPA coordinates to lithium cations, which leads to efficient electron injection when LiF/Al is used as the cathode. Electrochemical measurements demonstrate that both the cations and anions of DPyPA are stable, which may improve the stability of devices based on DPyPA. Red‐emitting, green‐emitting, and blue‐emitting fluorescent organic light emitting diodes with DPyPA as the ETM display lower turn‐on voltages, higher efficiencies, and stronger luminance than the devices with Alq3 as the ETM. The power efficiencies of the devices based on DPyPA are greater by 80–140% relative to those of the Alq3‐based devices. The improved performance of these devices is attributed to the increased carrier balance. In addition, the device employing DPyPA as the ETM possesses excellent stability: the half‐life of the DPyPA‐based device is 67 000 h—seven times longer than that of the Alq3‐based device—for an initial luminance of 5000 cd m?2.  相似文献   

13.
We have studied the characteristics of transparent bottom-gate thin film transistors (TFTs) using In–Ga–Zn–O (IGZO) as an active channel material. IGZO films were deposited on SiO2/Si substrates by DC sputtering techniques. Thereafter, the bottom-gate TFT devices were fabricated by depositing Ti/Au metal pads on IGZO films, where the channel length and width were defined to be 200 and 1000 μm, respectively. Post-metallization thermal annealing of the devices was carried out at 260, 280 and 300 °C in nitrogen ambient for 1 h. The devices annealed at 280 °C have shown better characteristics with enhanced field-effect mobility and high on–off current ratio. The compositional variation of IGZO films was also observed with different annealing temperatures.  相似文献   

14.
Synthesis, photophysical, and electrochemical characterizations of iridium‐complex anchored polyhedral oligomeric silsesquioxane (POSS) macromolecules are reported. Monochromatic organic light‐emitting devices based on these phosphorescent POSS materials show peak external quantum efficiencies in the range of 5–9%, which can be driven at a voltage less than 10 V for a luminance of 1000 cd m?2. The white‐emitting devices with POSS emitters show an external quantum efficiency of 8%, a power efficiency of 8.1 lm W?1, and Commission International de'lÉclairage coordinates of (0.36, 0.39) at 1000 cd m?2. Encouraging efficiency is achieved in the devices based on hole‐transporting and Ir‐complex moieties dual‐functionalized POSS materials without using host materials, demonstrating that triplet‐dye and carrier‐transporting moieties functionalized POSS material is a viable approach for the development of solution‐processable electrophosphorescent devices.  相似文献   

15.
Blue fluorescent materials based on silicone end‐capped 2‐diphenylaminofluorene derivatives are synthesized and characterized. These materials are doped into a 2‐methyl‐9,10‐di‐[2‐naphthyl]anthracene host as blue dopant materials in the emitting layer of organic light‐emitting diode devices bearing a structure of ITO/DNTPD (60 nm)/NPB (30 nm)/emitting layer (30 nm)/Alq3 (20 nm)/LiF (1.0 nm)/Al (200 nm). All devices exhibit highly efficient blue electroluminescence with high external quantum efficiencies (3.47%–7.34% at 20 mA cm?2). The best luminous efficiency of 11.2 cd A?1 and highest quantum efficiency of 7.34% at 20 mA cm?2 are obtained in a device with CIE coordinates (0.15, 0.25). A deep‐blue OLED with CIE coordinates (0.15, 0.14) exhibits a luminous efficiency of 3.70 cd A?1 and quantum efficiency of 3.47% at 20 mA cm?2.  相似文献   

16.
Organic light‐emitting diodes (OLEDs) have great potential applications in display and solid‐state lighting. Stability, cost, and blue emission are key issues governing the future of OLEDs. The synthesis and photoelectronics of a series of three kinds of binaphthyl (BN) derivatives are reported. BN1–3 are “melting‐point‐less” and highly stable materials, forming very good, amorphous, glass‐like films. They decompose at temperatures as high as 485–545 °C. At a constant current density of 25 mA cm?2, an ITO/BN3/Al single‐layer device has a much‐longer lifetime (>80 h) than that of an ITO/NPB/Al single‐layer device (8 h). Also, the lifetime of a multilayer device based on BN1 is longer than a similar device based on NPB. BNs are efficient and versatile OLED materials: they can be used as a hole‐transport layer (HTL), a host, and a deep‐blue‐light‐emitting material. This versatility may cut the cost of large‐scale material manufacture. More importantly, the deep‐blue electroluminescence (emission peak at 444 nm with CIE coordinates (0.16, 0.11), 3.23 cd A?1 at 0.21 mA cm?2, and 25200 cd m?2 at 9 V) remains very stable at very high current densities up to 1000 mA cm?2.  相似文献   

17.
Using imidazole‐type ancillary ligands, a new class of cationic iridium complexes ( 1 – 6 ) is prepared, and photophysical and electrochemical studies and theoretical calculations are performed. Compared with the widely used bpy (2,2′‐bipyridine)‐type ancillary ligands, imidazole‐type ancillary ligands can be prepared and modified with ease, and are capable of blueshifting the emission spectra of cationic iridium complexes. By tuning the conjugation length of the ancillary ligands, blue‐green to red emitting cationic iridium complexes are obtained. Single‐layer light‐emitting electrochemical cells (LECs) based on cationic iridium complexes show blue‐green to red electroluminescence. High efficiencies of 8.4, 18.6, and 13.2 cd A?1 are achieved for the blue‐green‐emitting, yellow‐emitting, and orange‐emitting devices, respectively. By doping the red‐emitting complex into the blue‐green LEC, white LECs are realized, which give warm‐white light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.42, 0.44) and color‐rendering indexes (CRI) of up to 81. The peak external quantum efficiency, current efficiency, and power efficiency of the white LECs reach 5.2%, 11.2 cd A?1, and 10 lm W?1, respectively, which are the highest for white LECs reported so far, and indicate the great potential for the use of these cationic iridium complexes in white LECs.  相似文献   

18.
While perovskite light‐emitting diodes typically made with high work function anodes and low work function cathodes have recently gained intense interests. Perovskite light‐emitting devices with two high work function electrodes with interesting features are demonstrated here. Firstly, electroluminescence can be easily obtained from both forward and reverse biases. Secondly, the results of impedance spectroscopy indicate that the ionic conductivity in the iodide perovskite (CH3NH3PbI3) is large with a value of ≈10?8 S cm?1. Thirdly, the shift of the emission spectrum in the mixed halide perovskite (CH3NH3PbI3?xBrx) light‐emitting devices indicates that I? ions are mobile in the perovskites. Fourthly, this work shows that the accumulated ions at the interfaces result in a large capacitance (≈100 μF cm?2). The above results conclusively prove that the organic–inorganic halide perovskites are solid electrolytes with mixed ionic and electronic conductivity and the light‐emitting device is a light‐emitting electrochemical cell. The work also suggests that the organic–inorganic halide perovskites are potential energy‐storage materials, which may be applicable in the field of solid‐state supercapacitors and batteries.  相似文献   

19.
Near‐infrared (NIR) lighting plays an increasingly important role in new facial recognition technologies and eye‐tracking devices, where covert and nonvisible illumination is needed. In particular, mobile or wearable gadgets that employ these technologies require electronic lighting components with ultrathin and flexible form factors that are currently unfulfilled by conventional GaAs‐based diodes. Colloidal quantum dots (QDs) and emerging perovskite light‐emitting diodes (LEDs) may fill this gap, but generally employ restricted heavy metals such as cadmium or lead. Here, a new NIR‐emitting diode based on heavy‐metal‐free In(Zn)As–In(Zn)P–GaP–ZnS quantum dots is reported. The quantum dots are prepared with a giant shell structure, enabled by a continuous injection synthesis approach, and display intense photoluminescence at 850 nm with a high quantum efficiency of 75%. A postsynthetic ligand exchange to a shorter‐chain 1‐mercapto‐6‐hexanol (MCH) affords the QDs with processability in polar solvents as well as an enhanced charge‐transport performance in electronic devices. Using solution‐processing methods, an ITO/ZnO/PEIE/QD/Poly‐TPD/MoO3/Al electroluminescent device is fabricated and a high external quantum efficiency of 4.6% and a maximum radiance of 8.2 W sr?1 m?2 are achieved. This represents a significant leap in performance for NIR devices employing a colloidal III–V semiconductor QD system, and may find significant applications in emerging consumer electronic products.  相似文献   

20.
Parasitic absorption in transparent electrodes is one of the main roadblocks to enabling power conversion efficiencies (PCEs) for perovskite‐based tandem solar cells beyond 30%. To reduce such losses and maximize light coupling, the broadband transparency of such electrodes should be improved, especially at the front of the device. Here, the excellent properties of Zr‐doped indium oxide (IZRO) transparent electrodes for such applications, with improved near‐infrared (NIR) response, compared to conventional tin‐doped indium oxide (ITO) electrodes, are shown. Optimized IZRO films feature a very high electron mobility (up to ≈77 cm2 V?1 s?1), enabling highly infrared transparent films with a very low sheet resistance (≈18 Ω □?1 for annealed 100 nm films). For devices, this translates in a parasitic absorption of only ≈5% for IZRO within the solar spectrum (250–2500 nm range), to be compared with ≈10% for commercial ITO. Fundamentally, it is found that the high conductivity of annealed IZRO films is directly linked to promoted crystallinity of the indium oxide (In2O3) films due to Zr‐doping. Overall, on a four‐terminal perovskite/silicon tandem device level, an absolute 3.5 mA cm?2 short‐circuit current improvement in silicon bottom cells is obtained by replacing commercial ITO electrodes with IZRO, resulting in improving the PCE from 23.3% to 26.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号