首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endured, low‐cost, and high‐performance flexible perovskite solar cells (PSCs) featuring lightweight and mechanical flexibility have attracted tremendous attention for portable power source applications. However, flexible PSCs typically use expensive and fragile indium–tin oxide as transparent anode and high‐vacuum processed noble metal as cathode, resulting in dramatic performance degradation after continuous bending or thermal stress. Here, all‐carbon‐electrode‐based flexible PSCs are fabricated employing graphene as transparent anode and carbon nanotubes as cathode. All‐carbon‐electrode‐based flexible devices with and without spiro‐OMeTAD (2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene) hole conductor achieve power conversion efficiencies (PCEs) of 11.9% and 8.4%, respectively. The flexible carbon‐electrode‐based solar cells demonstrate superior robustness against mechanical deformation in comparison with their counterparts fabricated on flexible indium–tin oxide substrates. Moreover, all carbon‐electrode‐based flexible PSCs also show significantly enhanced stability compared to the flexible devices with gold and silver cathodes under continuous light soaking or 60 °C thermal stress in air, retaining over 90% of their original PCEs after 1000 h. The promising durability and stability highlight that flexible PSCs are fully compatible with carbon materials and pave the way toward the realization of rollable and low‐cost flexible perovskite photovoltaic devices.  相似文献   

2.
3.
The electron transport layer (ETL) plays a crucial part in extracting electron carriers while optimizing the interfacial contact of perovskite/electrode in planar heterojunction perovskite solar cells (PVSCs). Despite various ETLs being designed for efficient PVSCs, there exists hardly any research on the effect of molecular stacking order on device performance. Herein, poly(ethylene-co-vinyl acetate) (EVA) is employed as the [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) solution additive. The strong binding energy between EVA with PC61BM promotes the molecular stacking order of ETLs, which alleviates the morphology inhomogeneity, possesses a matched energy level, blocks ion migration, and improves the water–oxygen barrier of perovskite devices. The blade-coated MAPbI3-based PVSCs achieve a power conversion efficiency (PCE) of 19.32% with positive reproducibility and negligible hysteresis, as well as maintain 90% and 80% of the initial PCE after storage under inert and ambient conditions (52% humidity) for 1500 h without encapsulation. This strategy also improves the champion PCE of CsFAMA-based PVSCs to 20.33%. These findings demonstrate that the regulation of molecular stacking order is a valid approach to optimize interfacial charge-carrier recombination in PVSCs, which meet the demand for high-performance ETL in large-area PVSCs and improve the upscaling of the fabrication technology toward practical applications.  相似文献   

4.
Stability is the main challenge in the field of organic–inorganic perovskite solar cells (PSCs). Finding low‐cost and stable hole transporting layer (HTL) is an effective strategy to address this issue. Here, a new donor polymer, poly(5,5‐didecyl‐5H‐1,8‐dithia‐as‐indacenone‐alt‐thieno[3,2‐b]thiophene) (PDTITT), is synthesized and employed as an HTL in PSCs, which has a suitable band alignment with respect to the double‐A cation perovskite film. Using PDTITT, the hole extraction in PSCs is greatly improved as compared to commonly used HTLs such as 2,2′,7,7′‐tetrakis[N,N‐di(4‐methoxyphenyl)amino]‐9,9′‐spirobifluorene (spiro‐OMeTAD), addressing the hysteresis issue. After careful optimization, an efficient PSC is achieved based on mesoscopic TiO2 electron transporting layer with a maximum power conversion efficiency (PCE) of 18.42% based on PDTITT HTL, which is comparable with spiro‐OMeTAD‐based PSC (19.21%). Since spiro‐based PSCs suffer from stability issue, the operational stability in the PSC with PDTITT HTL is studied. It is found that the device with PDTITT retains 88% of its initial PCE value after 200 h under illumination, which is better than the spiro‐based PSC (54%).  相似文献   

5.
A key issue for perovskite solar cells is the stability of perovskite materials due to moisture effects under ambient conditions, although their efficiency is improved constantly. Herein, an improved CH3NH3PbI3?xClx perovskite quality is demonstrated with good crystallization and stability by using water as an additive during crystal perovskite growth. Incorporating suitable water additives in N,N‐dimethylformamide (DMF) leads to controllable growth of perovskites due to the lower boiling point and the higher vapor pressure of water compared with DMF. In addition, CH3NH3PbI3?xClx · nH2O hydrated perovskites, which can be resistant to the corrosion by water molecules to some extent, are assumed to be generated during the annealing process. Accordingly, water additive based perovskite solar cells present a high power conversion efficiency of 16.06% and improved cell stability under ambient conditions compared with the references. The findings in this work provide a route to control the growth of crystal perovskites and a clue to improve the stability of organic–inorganic halide perovskites.  相似文献   

6.
In the past decade, perovskite solar cells (PSCs) have made remarkable progress in improving power conversion efficiency (PCE). In order to further improve the photovoltaic performance and long-term stability of PSCs, the interface layer is essential. A multifunctional cross-linked polyurethane (CLPU) is designed and synthesized via the spontaneous quaternization of polyurethane and 1, 6-diiodohexane on the surface of the perovskite layer. CLPU layer cannot only effectively induce secondary crystallization and passivate the surface defects of perovskite, reduce the non-radiative recombination, but also effectively block the moisture invasion. By this strategy, Cs0.05FA0.95PbI3 PSCs with excellent reproducibility, is realized, achieving a PCE of 23.14% with an open-circuit voltage of 1.11 V, a short-circuit current density of 25.69 mA cm−2, and a fill factor of 0.81. In addition, the unencapsulated devices show enhanced stability in 35 ± 5% relative humidity (RH) near 3000 h and in 65 ± 5% RH over 700 h. This study provides valuable insights into the role of CLPU interface layer in PSCs, which are essential for the design of high-performance devices.  相似文献   

7.
The surface of the solution‐processed methylammonium lead tri‐iodide (CH3NH3PbI3) perovskite layer in perovskite hybrid solar cells (pero‐HSCs) tends to become rough during operation, which inevitably leads to deterioration of the contact between the perovskite layer and the charge‐extraction layers. Moreover, the low electrical conductivity of the electron extraction layer (EEL) gives rises to low electron collection efficiency and severe charge carrier recombination, resulting in energy loss during the charge‐extraction and ‐transport processes, lowering the efficiency of pero‐HSCs. To circumvent these problems, we utilize a solution‐processed ultrathin layer of a ionomer, 4‐lithium styrenesulfonic acid/styrene copolymer (LiSPS), to re‐engineer the interface of CH3NH3PbI3 in planar heterojunction (PHJ) pero‐HSCs. As a result, PHJ pero‐HSCs are achieved with an increased photocurrent density of 20.90 mA cm?2, an enlarged fill factor of 77.80%, a corresponding enhanced power conversion efficiency of 13.83%, high reproducibility, and low photocurrent hysteresis. Further investigation into the optical and electrical properties and the thin‐film morphologies of CH3NH3PbI3 with and without LiSPS, and the photophysics of the pero‐HSCs with and without LiSPS are shown. These demonstrate that the high performance of the pero‐HSCs incorporated with LiSPS can be attributed to the reduction in both the charge carrier recombination and leakage current, as well as more efficient charge carrier collection, filling of the perforations in CH3NH3PbI3, and a higher electrical conductivity of the LiSPS thin layer. These results demonstrate that our method provides a simple way to boost the efficiency of pero‐HSCs.  相似文献   

8.
PbTiO3 (PTO) is explored as a versatile and tunable electron‐selective layer (ESL) for perovskite solar cells. To demonstrate effectiveness of PTO for electron–hole separation and charge transfer, perovskite solar cells are designed and fabricated in the laboratory with the PTO as the ESL. The cells achieve a power conversion efficiency (PCE) of ≈12.28% upon preliminary optimization. It is found that the PTO ferroelectric layer can not only increase the PCE, but also tune the photocurrent via tuning PTO's ferroelectric polarization. Moreover, to understand the physical mechanism underlying the carrier transport by the ferroelectric polarization, the electronic structure of PTO/CH3NH3PbI3 heterostructure is computed using the first‐principles methods, for which the triplet state is used to simulate charge transfer in the heterostructure. It is shown that the synergistic effect of type II band alignment and the specific ferroelectric polarization direction provide the effective extraction of electrons from the light absorber, while minimize recombination of photogenerated electron–hole pairs. Overall, the ferroelectric PTO is a promising and tunable ESL for optimizing electron transport in the perovskite solar cells. The design offers a different strategy for altering direction of carrier transport in solar cells.  相似文献   

9.
Ion migration induced interfacial degradation is a detrimental factor for the stability of perovskite solar cells (PSCs) and hence requires special attention to address this issue for the development of efficient PSCs with improved stability. Here, an “S‐shaped, hook‐like” organic small molecule, naphthalene diimide derivative (NDI‐BN), is employed as a cathode interface layer (CIL) to tailor the [6,6]‐phenylC61‐butyric acid methylester (PCBM)/Ag interface in inverted PSCs. By realizing enhanced electron extraction capability via the incorporation of NDI‐BN, a peak power conversion efficiency of 21.32% is achieved. Capacitance–voltage measurements and X‐ray photoelectron spectroscopy analysis confirmed an obvious role of this new organic CIL in successfully blocking ionic diffusion pathways toward the Ag cathode, thereby preventing interfacial degradation and improving device stability. The molecular packing motif of NDI‐BN further unveils its densely packed structure with π–π stacking force which has the ability to effectually hinder ion migration. Furthermore, theoretical calculations reveal that intercalation of decomposed perovskite species into the NDI clusters is considerably more difficult compared with the PCBM counterparts. This substantial contrast between NDI‐BN and PCBM molecules in terms of their structures and packing fashion determines the different tendencies of ion migration and unveils the superior potential of NDI‐BN in curtailing interfacial degradation.  相似文献   

10.
Planar n–i–p carbon perovskite solar cells (PSCs) with a hole transport layer that can be fabricated at low temperatures at low-cost exhibit great potential for large-scale manufacturing. Moreover, 2D perovskites have attracted considerable attention owing to their higher stability. In this work, scalable and highly efficient fully printed large-area carbon electrode-based 2D perovskite modules are reported through the insertion of a thin naphthaleneimide derivative (CATNI)-based interfacial layer between tin (IV) oxide and the perovskite layer. The results show that this facilitates the formation of the interfacial contact, suppresses energy losses, and substantially improves the performance parameters of the PSCs, especially their VOC value. A significantly enhanced VOC of 1.13 V is achieved resulting in the device PCE value reaching over 18%, which is one of the highest reported for fully printed PSCs so far. It is found that with the deployment of this CATNI-based interfacial layer, a more efficient carrier extraction is achieved. This ultimately contributed to enhanced spectral response as well as improved VOC for these carbon electrodes based on fully printed devices. Finally, the carbon-perovskite solar modules (carbon-PSMs) are fabricated on ITO glass substrates with dimensions of 5.0 × 5.0 cm. These prepared modules exhibited outstanding photovoltaic performance with the highest PCE value of over 14.6%.  相似文献   

11.
Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution‐processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g‐C3N4) into the perovskite layer. The addition of g‐C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g‐C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light‐absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density.  相似文献   

12.
This study is on the enhancement of the efficiency of wide bandgap (FA0.8Cs0.2PbI1.8Br1.2) perovskite solar cells (PSCs) used as the top layer of the perovskite/perovskite tandem solar cell. Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA) and the monomolecular layer called SAM layer are effective hole collection layers for APbI3 PSCs. However, these hole transport layers (HTL) do not give high efficiencies for the wide bandgap FA0.8Cs0.2PbI1.8Br1.2 PSCs. It is found that the surface-modified PTAA by monomolecular layer (MNL) improves the efficiency of PSCs. The improved efficiency is explained by the improved FA0.8Cs0.2PbI1.8Br1.2 film quality, decreased film distortion (low lattice disordering) and low density of the charge recombination site, and improves carrier collection by the surface modified PTAA layer. In addition, the relationship between the length of the alkyl group linking the anchor group and the carbazole group is also discussed. Finally, the wide bandgap lead PSCs (Eg = 1.77 eV) fabricated on the PTAA/monomolecular bilayer give a higher power conversion efficiency of 16.57%. Meanwhile, all-perovskite tandem solar cells with over 25% efficiency are reported by using the PTAA/monomolecular substrate.  相似文献   

13.
2D halide perovskites have recently been recognized as a promising avenue in perovskite solar cells (PSCs) in terms of encouraging stability and defect passivation effect. However, the efficiency (less than 15%) of ultrastable 2D Ruddlesden–Popper PSCs still lag far behind their traditional 3D perovskite counterparts. Here, a rationally designed 2D‐3D perovskite stacking‐layered architecture by in situ growing 2D PEA2PbI4 capping layers on top of 3D perovskite film, which drastically improves the stability of PSCs without compromising their high performance, is reported. Such a 2D perovskite capping layer induces larger Fermi‐level splitting in the 2D‐3D perovskite film under light illumination, resulting in an enhanced open‐circuit voltage (Voc) and thus a higher efficiency of 18.51% in the 2D‐3D PSCs. Time‐resolved photoluminescence decay measurements indicate the facilitated hole extraction in the 2D‐3D stacking‐layered perovskite films, which is ascribed to the optimized energy band alignment and reduced nonradiative recombination at the subgap states. Benefiting from the high moisture resistivity as well as suppressed ion migration of the 2D perovskite, the 2D‐3D PSCs show significantly improved long‐term stability, retaining nearly 90% of the initial power conversion efficiency after 1000 h exposure in the ambient conditions with a high relative humidity level of 60 ± 10%.  相似文献   

14.
15.
Perovskite surface treatment with additives has been reported to improve charge extraction, stability, and/or surface passivation. In this study, treatment of a 3D perovskite ((FAPbI3)1−x(MAPbBr3)x) layer with a thienothiophene-based organic cation (TTMAI), synthesized in this work, is investigated. Detailed analyses reveal that a 2D (n = 1) or quasi-2D layer does not form on the PbI2-rich surface 3D perovskite. TTMAI-treated 3D perovskite solar cells (PSCs) fabricated in this study show improved fill factors, providing an increase in their power conversion efficiencies (PCEs) from 17% to over 20%. It is demonstrated that the enhancement is due to better hole extraction by drift-diffusion simulations. Furthermore, thanks to the hydrophobic nature of the TTMAI, PSC maintains 82% of its initial PCE under 15% humidity for over 380 h (the reference retains 38%). Additionally, semitransparent cells are demonstrated reaching 17.9% PCE with treated 3D perovskite, which is one of the highest reported efficiencies for double cationic 3D perovskites. Moreover, the semitransparent 3D PSC (TTMAI-treated) maintains 87% of its initial efficiency for six weeks (>1000 h) when kept in the dark at room temperature. These results clearly show that this study fills a critical void in perovskite research where highly efficient and stable semitransparent perovskite solar cells are scarce.  相似文献   

16.
Despite being a promising candidate for next‐generation photovoltaics, perovskite solar cells (PSCs) exhibit limited stability that hinders their practical application. In order to improve the humidity stability of PSCs, herein, a series of ionic liquids (ILs) “1‐alkyl‐4‐amino‐1,2,4‐triazolium” (termed as RATZ; R represents alkyl chain, and ATZ represents 4‐amino‐1,2,4‐triazolium) as cations are designed and used as additives in methylammonium lead iodide (MAPbI3) perovskite precursor solution, obtaining triazolium ILs‐modified PSCs for the first time (termed as MA/RATZ PSCs). As opposed to from traditional methods that seek to improve the stability of PSCs by functionalizing perovskite film with hydrophobic molecules, humidity‐stable perovskite films are prepared by exploiting the self‐assembled monolayer (SAM) formation of water‐soluble triazolium ILs on a hydrophilic perovskite surface. The mechanism is validated by experimental and theoretical calculation. This strategy means that the MA/RATZ devices exhibit good humidity stability, maintaining around 80% initial efficiency for 3500 h under 40 ± 5% relative humidity. Meanwhile, the MA/RATZ PSCs exhibit enhanced thermal stability and photostability. Tuning the molecule structure of the ILs additives achieves a maximum power conversion efficiency (PCE) of 20.03%. This work demonstrates the potential of using triazolium ILs as additives and SAM and molecular design to achieve high performance PSCs.  相似文献   

17.
A high‐quality polycrystalline SnO2 electron‐transfer layer is synthesized through an in situ, low‐temperature, and unique butanol–water solvent‐assisted process. By choosing a mixture of butanol and water as a solvent, the crystallinity is enhanced and the crystallization temperature is lowered to 130 °C, making the process fully compatible with flexible plastic substrates. The best solar cells fabricated using these layers achieve an efficiency of 20.52% (average 19.02%) which is among the best in the class of planar n–i–p‐type perovskite (MAPbI3) solar cells. The strongly reduced crystallization temperature of the materials allows their use on a flexible substrate, with a resulting device efficiency of 18%.  相似文献   

18.
There has been rapid progress in solution‐processed organic solar cells (OSCs) and perovskite solar cells (PVSCs) toward low‐cost and high‐throughput photovoltaic technology. Carrier (electron and hole) transport layers (CTLs) play a critical role in boosting their efficiency and long‐time stability. Solution‐processed metal oxide nanocrystals (SMONCs) as a promising CTL candidate, featuring robust process conditions, low‐cost, tunable optoelectronic properties, and intrinsic stability, offer unique advantages for realizing cost‐effective, high‐performance, large‐area, and mechanically flexible photovoltaic devices. In this review, the recent development of SMONC‐based CTLs in OSCs and PVSCs is summarized. This paper starts with the discussion of synthesis approaches of SMONCs. Then, a broad range of SMONC‐based CTLs, including hole transport layers and electron transport layers, are reviewed, in which an emphasis is placed on the improvement of the efficiency and device stability. Finally, for the better understanding of the challenges and opportunities on SMONC‐based CTLs, several strategies and perspectives are outlined.  相似文献   

19.
As the key component in efficient perovskite solar cells, the electron transport layer (ETL) can selectively collect photogenerated charge carriers produced in perovskite absorbers and prevent the recombination of carriers at interfaces, thus ensuring a high power conversion efficiency. Compared with the conventional single‐ or dual‐layered ETLs, a gradient heterojunction (GHJ) strategy is more attractive to facilitate charge separation because the potential gradient created at an appropriately structured heterojunction can act as a driving force to regulate the electron transport toward a desired direction. Here, a SnO2/TiO2 GHJ interlayer configuration inside the ETL is reported to simultaneously achieve effective extraction and efficient transport of photoelectrons. With such an interlayer configuration, the GHJs formed at the perovskite/ETL interface act collectively to extract photogenerated electrons from the perovskite layer, while GHJs formed at the boundaries of the interconnected SnO2 and TiO2 networks throughout the entire ETL layer can extract electron from the slow electron mobility TiO2 network to the high electron mobility SnO2 network. Devices based on GHJ ETL exhibit a champion power conversion efficiency of 18.08%, which is significantly higher than that obtained from the compact TiO2 ETL constructed under the comparable conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号