首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fabrication of ultrasmall nanogaps (sub‐1 nm) with high density is of significant interest and importance in physics, chemistry, life science, materials science, surface science, nanotechnology, and environmental engineering. However, it remains a challenge to generate uncovered and clean sub‐1‐nm gaps with high density and uniform reproducibility. Here, a facile and low‐cost approach is demonstrated for the fabrication of high‐density sub‐1‐nm gaps from Au nanoparticle monolayers as reproducible surface‐enhanced Raman scattering (SERS) substrates. Au nanoparticles with larger diameters possess lower surface charge, thus the obtained large‐area nanoparticle monolayer generates a high‐density of sub‐1‐nm gaps. In addition, a remarkable SERS performance with a 1011 magnitude for the Raman enhancement is achieved for 120 nm Au nanoparticle monolayers due to the dramatic increase in the electromagnetic field enhancement when the obtained gap is smaller than 0.5 nm. The Au nanoparticle monolayer is also transferred onto a stretchable PDMS substrate and the structural stability and reproducibility of the high‐density sub‐1‐nm gaps in Au monolayer films are illustrated. The resultant Au nanoparticle monolayer substrates with an increasing particle diameter exhibit tunable plasmonic properties, which control the plasmon‐enhanced photocatalytic efficiency for the dimerization of p‐aminothiophenol. The findings reported here offer a new opportunity for expanding the SERS application.  相似文献   

2.
Plasmonic materials possessing dense hot spots with high field enhancement over a large area are highly desirable for ultrasensitive biochemical sensing and efficient solar energy conversion; particularly those based on low‐cost noncoinage metals with high natural abundance are of considerable practical significance. Here, 3D aluminum hybrid nanostructures (3D‐Al‐HNSs) with high density of plasmonic hot spots across a large scale are fabricated via a highly efficient and scalable nonlithographic method, i.e., millisecond‐laser‐direct‐writing in liquid nitrogen. The nanosized alumina interlayer induces intense and dual plasmonic resonance couplings between adjacent Al nanoparticles with bimodal size distribution within each of the hybrid assemblies, leading to remarkably elevated localized electric fields (or hot spots) accessible to the analytes or reactants. The 3D‐stacked nanostructure substantially raises the hot spot density, giving rise to plasmon‐enhanced light harvesting from deep UV to the visible, strong enhancement of Raman signals, and a very low limit of detection outperforming reported Al nanostructures, and even comparable to the noble metals. Combined with the long‐term stability and good reproducibility, the 3D‐Al‐HNSs hold promise as a robust low‐cost plasmonic material for applications in plasmon‐enhanced spectroscopic sensing and light harvesting.  相似文献   

3.
Nanopore structures have displayed attractive prospects in diverse important applications such as nanopore‐based biosensors and enhanced spectroscopy. However, on the one hand, the fabrication techniques to obtain sub‐10 nm sized nanopores so far is very limited. On the other hand, the electromagnetic enhancement of nanopores is still relatively low. In this work, using a facile chemical etching strategy on 2D plasmonic Ag nanoparticle supercrystals, fine nanopore arrays with sub‐10 nm pore size have been successfully fabricated and a “nanopore‐in‐nanogap” hybrid plasmon mode has been investigated. An in situ etching and surface‐enhanced Raman spectroscopy (SERS) detection indicate that novel hybrid plasmon structure may create an enhanced electromagnetic coupling and increase SERS signal at ≈10× magnification. The breaking of plasmon bonding dipolar mode and generation of antibonding‐like plasmon mode contribute to this enhanced electromagnetic coupling. The facile etching strategy, as a common approach, may open the doors for the fabrication of nanopores in various compositions for numerous applications.  相似文献   

4.
Plasmonics is a fast developing research area with a great potential for practical applications. However, the implementation of plasmonic devices requires low cost methodologies for the fabrication of organized metallic nanostructures that covers a relative large area (~1 cm2). Here the patterning of periodic arrays of nanoholes (PANHs) in gold films by using a combination of interference lithography, metal deposition, and lift off is reported. The setup allows the fabrication of periodic nanostructures with hole diameters ranging from 110 to 1000 nm, for 450 and 1800 nm of periodicity, respectively. The large areas plasmonic substrates consist of 2 cm × 2 cm gold films homogeneously covered by nanoholes and gold films patterned with a regular microarray of 200 μm diameter circular patches of PANHs. The microarray format is used for surface plasmon resonance (SPR) imaging and its potential for applications in multiplex biosensing is demonstrated. The gold films homogeneously covered by nanoholes are useful as electrodes in a thin layer organic photovoltaic. This is first example of a large area plasmonic solar cell with organized nanostructures. The fabrication approach reported here is a good candidate for the industrial‐scale production of metallic substrates for plasmonic applications in photovoltaics and biosensing.  相似文献   

5.
Hybrid plasmonic nanostructures comprising gold nanoparticle (AuNP) arrays separated from Au substrate through a temperature‐sensitive poly(N‐isopropylacrylamide) (PNIPAM) linker layer are constructed, and unique plasmonic‐coupling‐based surface plasmon resonance (SPR) sensing properties are investigated. The optical properties of the model system are investigated by in situ and scan‐mode SPR analysis. The swelling‐shrinking transitions in the polymer linker brush are studied by in situ contact‐mode atomic force microscopy at two different temperatures in water. It is revealed that the thickness of the PNIPAM layer is decreased from 30 to 14 nm by increasing the temperature from 20 to 32 °C. For the first time the dependence of the coupling behavior in AuNPs is investigated with controlled density on the temperature in a quantitative manner in terms of the change in SPR signals. The device containing AuNPs with optimized AuNP density shows 3.2‐times enhanced sensitivity compared with the control Au film‐PNIPAM sample. The refractive index sensing performance of the Au film‐PNIPAM‐AuNPs is greater than that of Au film‐PNIPAM by 19% when the PNIPAM chains have a collapsed conformation above lower critical solution temperature.  相似文献   

6.
Monomeric gold (Au) and silver (Ag) nanoparticle (NP) arrays are self‐assembled uniformly into anodized aluminium oxide (AAO) nanopores with a high homogeneity of greater than 95%, using ultrasonication. The monomeric metal NP array exhibits asymmetric plasmonic absorption due to Fano‐like resonance as interpreted by finite‐difference time‐domain (FDTD) simulation for the numbers up to 127 AuNPs. To examine gap distance‐dependent collective‐plasmonic resonance, the different dimensions of S, M, and L arrays of the AuNP diameters/the gap distances of ≈36 nm/≈66 nm, ≈45 nm/≈56 nm, and ≈77 nm/≈12 nm, respectively, are prepared. Metal NP arrays with an invariable nanogap of ≈50 nm can provide consistent surface‐enhanced Raman scattering (SERS) intensities for Rhodamine 6G (Rh6G) with a relative standard deviation (RSD) of 3.8–5.4%. Monomeric arrays can provide an effective platform for 2D hot‐electron excitation, as evidenced by the SERS peak‐changes of 4‐nitrobenzenethiol (4‐NBT) adsorbed on AgNP arrays with a power density of ≈0.25 mW µm‐2 at 514 and 633 nm. For practical purposes, the bacteria captured by 4‐mercaptophenylboronic acid are found to be easily destroyed under visible laser excitation at 514 nm with a power density of ≈14 mW µm‐2 for 60 min using Ag due to efficient plasmonic‐electron transfer.  相似文献   

7.
Nanogap plasmonic structures, which can strongly enhance electromagnetic fields, enable widespread applications in surface‐enhanced Raman spectroscopy (SERS) sensing. Although the directed self‐assembly strategy has been adopted for the fabrication of micro/nanostructures on open surfaces, fabrication of nanogap plasmonic structures on complex substrates or at designated locations still remains a grand challenge. Here, a switchable self‐assembly method is developed to manufacture 3D nanogap plasmonic structures by combining supercritical drying and capillary‐force driven self‐assembly (CFSA) of micropillars fabricated by laser printing. The polymer pillars can stay upright during solvent development via supercritical drying, and then can form the nanogap after metal coating and subsequent CFSA. Due to the excellent flexibility of this method, diverse patterned plasmonic nanogap structures can be fabricated on planar or nonplanar substrates for SERS. The measured SERS signals of different patterned nanogaps in fluidic environment show a maximum enhancement factor ≈8 × 107. Such nanostructures in microchannels also allow localized sensing for anticancer drugs (doxorubicin). Resulting from the marriage of top‐down and self‐assembly techniques, this method provides a facile, effective, and controllable approach for creating nanogap enabled SERS devices in fluidic channels, and hence can advance applications in precision medicine.  相似文献   

8.
A novel all‐femtosecond‐laser‐processing technique is proposed for the fabrication of 2D periodic metal nanostructures inside 3D glass microfluidic channels, which have applications to real‐time surface‐enhanced Raman spectroscopy (SERS). In the present study, 3D glass microfluidic channels are fabricated by femtosecond‐laser‐assisted wet etching. This is followed by the space‐selective formation of Cu‐Ag layered thin films inside the microfluidic structure via femtosecond laser direct writing ablation and electroless metal plating. The Cu‐Ag films are subsequently nanostructured by irradiation with linearly polarized beams to form periodic surface structures. This work demonstrates that a double exposure to laser beams having orthogonal polarization directions can generate arrays of layered Cu‐Ag nanodots with dimensions as small as 25% of the laser wavelength. The resulting SERS microchip is able to detect Rhodamine 6G, exhibiting an enhancement factor of 7.3 × 108 in conjunction with a relative standard deviation of 8.88%. This 3D microfluidic chip is also found to be capable of the real‐time SERS detection of Cd2+ ions at concentrations as low as 10 ppb in the presence of crystal violet. This technique shows significant promise for the fabrication of high performance microfluidic SERS platforms for the real‐time sensing of toxic substances with ultrahigh sensitivity.  相似文献   

9.
Localized surface plasmon resonance (LSPR) devices based on resonant metallic metasurfaces have shown disruptive potential for many applications including biosensing and photocatalysis. Despite significant progress, highly performing Au plasmonic nanotextures often suffer of suboptimal electric field enhancement, due to damping effects in multicrystalline domains. Fabricating well‐defined Au nanocrystals over large surfaces is very challenging, and usually requires time‐intensive multi‐step processes. Here, presented are first insights on the large‐scale self‐assembly of monocrystalline Au nano‐islands with tunable size and separation, and their application as efficient LSPR surfaces. Highly homogeneous centimeter‐sized Au metasurfaces are fabricated by one‐step deposition and in situ coalescence of hot nanoparticle aerosols into a discontinuous monolayer of highly faceted monocrystals. First insights on the mechanisms driving the high‐temperature synthesis of these highly faceted Au nanotextures are obtained by molecular dynamic and detailed experimental investigation of their growth kinetics. Notably, these metasurfaces demonstrat high‐quality and tunable LSPR, enabling the fabrication of highly performing optical gas molecule sensors detecting down to 3 × 10?6 variations in refractive index at room temperature. It is believed that these findings provide a rapid, low‐cost nanofabrication tool for the engineering of highly homogenous Au metasurfaces for large‐scale LSPR devices with application ranging from ultrasensitive optical gas sensors to photocatalytic macroreactors.  相似文献   

10.
In a quest to fabricate novel solar energy materials, the high quantum efficiency and long charge separated states of photosynthetic pigment‐proteins are being exploited through their direct incorporation in bioelectronic devices. In this work, a biohybrid photocathode comprised of bacterial reaction center‐light harvesting 1 (RC‐LH1) complexes self‐assembled on a nanostructured silver substrate yields a peak photocurrent of 166 μA cm?2 under 1 sun illumination, and a maximum of 416 μA cm?2 under 4 suns, the highest reported to date on a bare metal electrode. A 2.5‐fold plasmonic enhancement of light absorption per RC‐LH1 complex is observed on the rough silver substrate. This plasmonic interaction is assessed using confocal fluorescence microscopy, revealing an increase of fluorescence yield, and radiative rate of the RC‐LH1 complexes, signatures of plasmon‐enhanced fluorescence. Nanostructuring of the silver substrate also enhanced the stability of the protein under continuous illumination by almost an order of magnitude relative to a nonstructured bulk silver control. Due to its ease of construction, increased protein loading capacity, stability, and more efficient use of light, this hybrid material is an excellent candidate for further development of plasmon‐enhanced biosensors and biophotovoltaic devices.  相似文献   

11.
The synthesis of anisotropic metal nanostructures is strongly desired for exploring plasmon‐enabled applications. Herein, the preparation of anisotropic Au/SiO2 and Au/SiO2/Pd nanostructures is realized through selective silica coating on Au nanobipyramids. For silica coating at the ends of Au nanobipyramids, the amount of coated silica and the overall shape of the coated nanostructures exhibit a bell‐shaped dependence on the cationic surfactant concentration. For both end and side silica coating on Au nanobipyramids, the size of the silica component can be varied by changing the silica precursor amount. Silica can also be selectively deposited on the corners or facets of Au nanocubes, suggesting the generality of this method. The blockage of the predeposited silica component on Au nanobipyramids enables further selective Pd deposition. Suzuki coupling reactions carried out with the different bimetallic nanostructures functioning as plasmonic photocatalysts indicate that the plasmonic photocatalytic activity is dependent on the site of Pd nanoparticles on Au nanobipyramids. Taken together, these results suggest that plasmonic hot spots play an important role in hot‐electron‐driven plasmonic photocatalysis. This study opens up a promising route to the construction of anisotropic bimetallic nanostructures as well as to the design of bimetallic plasmonic‐catalytic nanostructures as efficient plasmonic photocatalysts.  相似文献   

12.
Silver nanostructures with narrow plasmon linewidths and good chemical stability are strongly desired for plasmonic applications. Herein, a facile method is discussed for the preparation of Ag nanostructures with narrow plasmon linewidths and improved chemical stability through Ag overgrowth on monodispersed Au nanobipyramids. Structural evolution from bipyramid through rice to rod is observed, indicating that Ag atoms are preferentially deposited on the side surfaces of Au nanobipyramids. The resultant (Au nanobipyramid)@Ag nanostructures possess high size and shape uniformities, and much narrower plasmon linewidths than other Ag nanostructures. The spectral evolution of the supported Ag nanostructures is ascertained by both ensemble and single‐particle characterizations, together with electrodynamic simulations. Systematic measurements of the refractive index sensing characteristics indicate that Ag nanostructures in this study possess high index sensitivities and figure of merit (sensitivity divided by linewidth) values. Moreover, Ag nanostructures in this study exhibit greatly improved chemical stability. The superior sensing capability of Ag nanostructures in this study is further demonstrated by the detection of sulfide ions at a relatively low detection limit. Taken together, results of this study show that the Au‐nano­bipyramid‐supported Ag nanostructures will be an outstanding candidate for the design of ultrasensitive plasmonic sensing devices as well as for the development of other plasmon‐enabled technological applications.  相似文献   

13.
Positioning probe molecules at electromagnetic hot spots with nanometer precision is required to achieve highly sensitive and reproducible surface‐enhanced Raman spectroscopy (SERS) analysis. In this article, molecular positioning at plasmonic nanogaps is reported using a high aspect ratio (HAR) plasmonic nanopillar array with a controlled surface energy. A large‐area HAR plasmonic nanopillar array is generated using a nanolithography‐free simple process involving Ar plasma treatment applied to a smooth polymer surface and the subsequent evaporation of metal onto the polymer nanopillars. The surface energy can be precisely controlled through the selective removal of an adsorbed self‐assembled monolayer of low surface‐energy molecules prepared on the plasmonic nanopillars. This process can be used to tune the surface energy and provide a superhydrophobic surface with a water contact angle of 165.8° on the one hand or a hydrophilic surface with a water contact angle of 40.0° on the other. The highly tunable surface wettability is employed to systematically investigate the effects of the surface energy on the capillary‐force‐induced clustering among the HAR plasmonic nanopillars as well as on molecular concentration at the collapsed nanogaps present at the tops of the clustered nanopillars.  相似文献   

14.
Asymmetric Janus nanostructures containing a gold nanocage (NC) and a carbon–titania hybrid nanocrystal (AuNC/(C–TiO2)) are prepared using a novel and facile microemulsion‐based approach that involves the assistance of ethanol. The localized surface plasmon resonance of the Au NC with a hollow interior and porous walls induce broadband visible‐light harvesting in the Janus AuNC/(C–TiO2). An acetone evolution rate of 6.3 μmol h?1 g?1 is obtained when the Janus nanostructure is used for the photocatalytic aerobic oxidation of iso‐propanol under visible light (λ = 480–910 nm); the rate is 3.2 times the value of that obtained with C–TiO2, and in photo‐electrochemical investigations an approximately fivefold enhancement is obtained. Moreover, when compared with the core–shell structure (AuNC@(C–TiO2) and a gold–carbon–titania system where Au sphere nanoparticles act as light‐harvesting antenna, Janus AuNC/(C–TiO2) exhibit superior plasmonic enhancement. Electromagnetic field simulation and electron paramagnetic resonance results suggest that the plasmon–photon coupling effect is dramatically amplified at the interface between the Au NC and C–TiO2, leading to enhanced generation of energetic hot electrons for photocatalysis.  相似文献   

15.
Precise control of the topology of metal nanocrystals and appropriate modulation of the metal–semiconductor heterostructure is an important way to understand the relationship between structure and material properties for plasmon‐induced solar‐to‐chemical energy conversion. Here, a bottom‐up wet chemical approach to synthesize Au/Ni2P heterostructures via Pt‐catalyzed quasi‐epitaxial overgrowth of Ni on Au nanorods (NR) is presented. The structural motif of the Ni2P is controlled using the aspect ratio of the Au NR and the effective micelle concentration of the C16TAB capping agent. Highly ordered Au/Pt/Ni2P nanostructures are employed as the photoelectrocatalytic anode system for water splitting. Electrochemical and ultrafast absorption spectroscopy characterization indicates that the structural motif of the Ni2P (controlled by the outer‐shell deposition of Ni) helps to manipulate hot electron transfer during surface plasmon decay. With optimized Ni2P thickness, Pt‐tipped Au NR with an aspect ratio of 5.2 exhibits a geometric current density of 10 mA cm?2 with an overpotential of 140 mV. The photoanode displays unprecedented long‐term stability with continuous chronoamperometric performance of 50 h at an input potential of 1.5 V with over 30 days. This work provides definitive guidance for designing plasmonic–catalytic nanomaterials for enhanced solar‐to‐chemical energy conversion.  相似文献   

16.
2D transition metal dichalcogenides are becoming attractive materials for novel photoelectric and photovoltaic applications due to their excellent optoelectric properties and accessible optical bandgap in the near‐infrared to visible range. Devices utilizing 2D materials integrated with metal nanostructures have recently emerged as efficient schemes for hot electron‐based photodetection. Metal‐semiconductor heterostructures with low cost, simple procedure, and fast response time are crucial for the practical applications of optoelectric devices. In this paper, template‐based sputtering method is used first to fabricate Au nanoantenna (NA)/MoS2 heterostructures with low cost, simple preparation, broad spectral response, and fast response time. Through the measurement of femtosecond pump‐probe spectroscopy, it is demonstrated that plasmon‐induced hot electron transfer takes place in the Au NA/MoS2 heterostructure on the order of 200 fs with an injected electron density of about 5.6 × 1012 cm?2. Moreover, the pump‐power‐dependent photoluminescence spectra confirm that the exciton energy of MoS2 can be enhanced, coupled, and reradiated by the Au NA. Such ultrafast plasmon‐induced hot electron transfer in the metal‐semiconductor heterostructure can enable novel 2D devices for light harvesting and photoelectric conversion.  相似文献   

17.
The utilization of inorganic semiconductors for surface‐enhanced Raman spectroscopy (SERS) has attracted enormous interest. However, despite the technological relevance of organic semiconductors for enabling inexpensive, large‐area, and flexible devices via solution processing techniques, these π‐conjugated systems have never been investigated for SERS applications. Here for the first time, a simple and versatile approach is demonstrated for the fabrication of novel SERS platforms based on micro‐/nanostructured 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) thin films via an oblique‐angle vapor deposition. The morphology of C8‐BTBT thin films is manipulated by varying the deposition angle, thus achieving highly favorable 3D vertically aligned ribbon‐like micro‐/nanostructures for a 90° deposition angle. By combining C8‐BTBT semiconductor films with a nanoscopic thin Au layer, remarkable SERS responses are achieved in terms of enhancement (≈108), stability (>90 d), and reproducibility (RSD < 0.14), indicating the great promise of Au/C8‐BTBT films as SERS platforms. Our results demonstrate the first example of an organic semiconductor‐based SERS platform with excellent detection characteristics, indicating that π‐conjugated organic semiconductors have a great potential for SERS applications.  相似文献   

18.
Gold‐gap‐silver nanostructures (GGS NSs) with interior nanobridged gaps are enantioselectively fabricated. Guided by l/d ‐cysteine, the GGS‐L/D (L/D represents l/d ‐cysteine) NSs show reversed plasmon‐induced circular dichroism (CD) signals in the visible region. It is found that the nanogap plays a key role in the plasmonic CD of GGS NSs and the chiroptical response can be tailored by adjusting the amount of cysteine. The anisotropy factor of GGS‐L/D NSs with a 0.5 nm interior gap at 430 nm is as high as ≈0.01. The circularly polarized photocatalytic activity of GGS NSs is examined. It is shown that upon irradiation with left‐circularly polarized light, the catalytic efficiency of GGS‐L NSs is 73‐fold and 17‐fold higher than that of Au nanoparticles (NPs) and Au@Ag core–shell NPs, respectively. Upon irradiation with right‐circularly polarized light, the catalytic activity of GGS‐D NSs is about 71 times and 17 times higher than that of Au NPs and Au@Ag core–shell NPs, respectively. These unique chiral NSs with high plasmonic response can be applied to enantioselective catalysis.  相似文献   

19.
The metallic nanostructures with unique properties of tunable plasmon resonance and large field enhancement have been cooperated with semiconductor to construct hetero‐nanostructures for various applications. Herein, a general and facile approach to synthesize uniform dumbbell‐like gold–sulfide core–shell hetero‐nanostructures is reported. The transformation from Au nanorods (NRs) to dumbbell‐like Au NRs and coating of metal sulfide shells (including Bi2S3, CdS, CuxS, and ZnS) are achieved in a one‐pot reaction. Due to the reshaping of Au core and the deposition of sulfide shell, the plasmon resonances of Au NRs are highly enhanced, especially the about 2 times enhancement for the visible transverse plasmon resonance compared with the initial Au NRs. Owing to the highly enhanced visible light absorption and strong local electric field, we find the photocatalytic activity of dumbbell‐like Au–Bi2S3 NRs is largely enhanced compared with pure Bi2S3 and normal Au–Bi2S3 NRs by testing the photodegradation rate of Rhodamine B (RhB). Moreover, the second‐layer sulfide can be coated and the double‐shell Au–Bi2S3–CdS hetero‐nanostructures show further improved photodegradation rate, especially about 2 times than that of Degussa P25 TiO2 (P25) ascribing to the optimum band arrangement and then the prolonged lifetime of photo‐generated carriers.  相似文献   

20.
The synthesis of large lattice mismatch metal‐semiconductor core–shell hetero‐nanostructures remains challenging, and thus the corresponding optical properties are seldom discussed. Here, we report the gold‐nanorod‐seeded growth of Au–CdS core–shell hetero‐nanorods by employing Ag2S as an interim layer that favors CdS shell formation through a cation‐exchange process, and the subsequent CdS growth, which can form complete core–shell structures with controllable shell thickness. Exciton–plasmon interactions observed in the Au–CdS nanorods induce shell thickness‐tailored and red‐shifted longitudinal surface plasmon resonance and quenched CdS luminescence under ultraviolet light excitation. Furthermore, the Au–CdS nanorods demonstrate an enhanced and plasmon‐governed two‐photon luminescence under near‐infrared pulsed laser excitation. The approach has potential for the preparation of other metal‐semiconductor hetero‐nanomaterials with complete core–shell structures, and these Au–CdS nanorods may open up intriguing new possibilities at the interface of optics and electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号